Отделение флотации флотационной фабрики производительностью 2 млн. т/год

Федеральное агентство по образованию

ФГБОУ ВПО

"УРАЛЬСКИЙ ГОСУДАРСТВЕННЫЙ ГОРНЫЙ УНИВЕРСИТЕТ"

КАФЕДРА "ОБОГАЩЕНИЕ ПОЛЕЗНЫХ ИСКОПАЕМЫХ"


Курсового проекта

по дисциплине: "Флотационные методы обогащения"

Отделение флотации флотационной фабрики производительностью 2 млн. т/год


Руководитель проекта: Колтунов А.В.

Разработал: Аманжол А.А.


Екатеринбург, 2013

Содержание


Введение

. Обоснование схемы флотации

.Режимная карта отделения флотации

. Расчёт технологического баланса продуктов обогащения и принципиальной схемы флотации

. Расчёт качественно-количественной схемы флотации

. Расчёт водно-шламовой схемы

. Обоснование, выбор и расчёт флотационных машин и реагентного оборудования

. Составление схемы движения пульпы, компоновка оборудования в отделение флотации

Список использованной литературы


Введение

флотация обогащение реагентный пульпа

Флотационный метод обогащения полезных ископаемых является одним из наиболее распространенных технологических процессов. В настоящее время в связи с вовлечением в переработку бедных и труднообогатимых руд, а также в связи с необходимостью комплексного и наиболее полного использования рудного сырья флотация приобретает все большее значение. Практика флотации достигла значительных успехов, однако закономерности флотации до настоящего времени полностью не раскрыты, поэтому вопросы развития теории и практики флотации не потеряли своей актуальности.

Возрастающие потребности народного хозяйства в цветных, редких, чёрных, благородных металлах, угля, удобрениях, строительных минералах вызывают необходимость увеличения степени комплексности использования полезных ископаемых при переработке и обогащении. Основными в переработке многих типов полезных ископаемых являются наиболее универсальные флотационные методы обогащения. Они используются, например, при обогащении более 95% руд цветных металлов. Возрастающее значение флотационных методов обогащения в настоящее время обусловлено вовлечением в переработку бедных, тонковкрапленных и труднообогатимых руд и углей, проблему комплексного и более полного использования, которых другими методами обогащения без применения флотации решить практически невозможно. Сам процесс флотации основан на различии в удельных свободных поверхностных энергиях минералов, что позволяет получать высокую селективность обогащения. Важнейшим и обязательным условием флотации является различная смачиваемость минералов водой. Одни частицы (гидрофильные) хорошо смачивающиеся водой, другие (гидрофобные) - плохо.

Флотацией редко удаётся за одну операцию получить кондиционный концентрат и отвальные хвосты с минимальным содержанием ценного компонента, поэтому наряду с основной флотацией проводят перечистные и контрольные флотации.

К недостаткам флотационных методов обогащения относится то, что флотацией невозможно обогащать крупнозернистый материал, что требует весьма тонкого измельчения. Используемые реагенты вредны для здоровья и часто ядовиты, частично реагенты попадают в отвалы, загрязняя окружающую среду.

Данный курсовой проект представляет собой проект флотационного отделения обогатительной фабрики по обогащению медно-цинковой руды, в состав которой входят такие минералы, как халькопирит, сфалерит, пирит, кварц, серицит и хлориты.

Медь широко используется в технике благодаря своей высокой электропроводности, теплопроводности и пластичности. Около 50% добываемой меди используется в электротехнической промышленности для производства кабелей, приводов и шин. Из меди изготовляют детали холодильников, теплообменников, вакуумной аппаратуры. На основе меди создано большое число сплавов с такими металлами, как Zn, Sn, Al, Dt, Ni, Mn, Pb, Ti, Ag, Au и другие, и реже с неметаллами P, S, O и другие. Область применения этих сплавов очень обширна. Многие из них обладают высокими антифрикционными свойствами. Сплавы применяют в литом и кованом состоянии, а также в виде изделий из порошка. Основными сплавами являются латунь и бронза.

Цинк-тяжелый цветной металл, химически активен, обладает хорошо выраженными восстановительными свойствами. Цинк в природе встречается в виде минерала цинковой обманки ZnS, которая является цинковой рудой. Из нее получают цинк посредством обжига на воздухе. Свободный цинк широко применяется в промышленности. Так как он образует на поверхности металла защитную оксидную пленку, им покрывают изделия из железа для защиты от коррозии. Для этого изделия погружают в расплавленный цинк- происходит цинкование. Чистый цинк довольно хрупок, чаще он применяется в составе сплавов, например латуни.


1. Обоснование схемы флотации


В задании на проектирование указано, что исходная руда состоит из халькопирита, малахита, азурита, сфалерита, пирита, кварца, смитсонита, кальцита .

Смитсонит- цинковый шпат (в честь английский минералога Дж. Смитсона, J. Smithson, 1765-1829 * а. smithsonite, н. Smithsonit; ф. smithsonite, calamine; и. smitsonita), - минерал класса карбонатов, Zn [CО3]. Примеси: Cu, Mg, Mn, Fe, Со, Cd и др. Изоструктурен с кальцитом. Кристаллы редки, чаще скорлуповатые, почковидные выделения, зонально-концентрические корки с радиально-лучистым строением, землистые массы. Чистый смитсонит белый, бесцветный. Примеси придают смитсониту различную окраску: светло-коричневую (Fe), жёлтую (Cd), розовую, пурпурную (Со), зелёную или голубую (Cu). Полупрозрачен до прозрачного. Блеск стеклянный с перламутровым отливом. Спайность по ромбоэдру не вполне совершенная. Твердость 4,5-5. Плотностть4100-4500 кг/м3. Хрупок.

Смитсонит- типичный минерал зоны окисления цинксодержащих сульфидных месторождений , в которых образуется метасоматическим путём за счёт вмещающих известняков и жильного кальцита (Ачисайское месторождение, Казахстан; Дальнегорское, Приморье, и др.; за рубежом - Ледвилл, штат Колорадо,США; Цумеб, Намибия). Вместе с гемиморфитом и виллемитом смитсонит - один из главных компонентов окисленных руд Zn. Красивые образцы используются как коллекционный материал, реже - ювелирно-поделочный камень. Смитсонит обогащают (после обесшламливани руд) по двум основным схемам, включающим: предварительную сульфидизацию сернистым натрием при температуре 320-330 К (50-60° С), активацию медным купоросом и флотацию ксантогенатами (аэрофлотами) при обычной температуре; сульфидизацию при обычной температуре и флотацию первичными алифатическими аминами при pH 10,5-11,5. Депрессируется избытком сернистого натрия, медного купороса и ионов OH-.

Азурит- (от франц. azur - лазурь, синева; назв. по цвету * а. azurite; н. Azurit, Kupferlasur; ф. azurite, bleu de montagne; и. azurita) - минерал класса карбонатов, Cu2Cu[CO3]2(OH)2. Содержит 55,3% Cu. Кристаллизуется в моноклинной сингонии; кристаллическая структура координационная. Образует щётки, друзы мелких толстотаблитчатых и короткопризматических, реже длиннопризматических кристаллов. Характерны также радиально-лучистые агрегаты, конкреции, плотные массы и землистые скопления. Цвет в кристаллах тёмно-синий, в агрегатах и землистых массах - васильковый, до голубого. Твердость/ 3,5-4. Плотность 3800 кг/м3. Спайность совершенная в двух направлениях. Типичный минерал зоны окисления сульфидных месторождений меди. При дальнейшем окислении переходит в малахит.

Азурит-один из минералов-индикаторов медных руд, а также второстепенный рудный минерал меди и сырьё для приготовления синей краски. флотацией простым схемам. Собиратели: высшие ксантаты (после сульфидизации NaHS или Na2S), жирные кислоты с короткой углеводородной цепью и их мыла. Рекомендуется предварительное обесшламливание руды. Из "упорных" руд извлекается по методу Мостовича.

Сфалерит-от греческого "сфалерос"-"обманщик", так как иногда принимали за галенит; синоним-цинковая обманка.

Химический состав. Состав Zn-67,1; S-32,9%; примеси Fe-до 26,2; Mn-до 5,8%; Cd,Ga, Sn, Hg, Te.

Примеси часто распределяются пятнисто, зонально. Небогатый примесями сфалерит или содержащий примеси, не влияющие на его окраску, называется клейофаном, богатый железом черный сфалерит-марматитом, богатый кадмием и другими примесями.

Физические свойства. Блеск у яснокристаллического сфалерита от жирного до алмазного, у скрытокристаллического - тусклый. Излом ступенчатый. Твердость 3,5-4. Черта от бесцветной до бурой в зависимости от состава (цвета). Плотность 3,9-4,1.

Цвет от светло-коричневого до черного (черный марматит сод.Fe>8-10%, коричневый и бурый сфалерит-2-8%, желтый -до 1%). Другая окраска может наблюдаться лишь при сод. Fe<1%. Так, зеленая окраска разных оттенков характерна для сфалеритов,сод.Со2+, красная и оранжевая-для сфалеритов даже с небольшими (0,00 n-0,0 n%) примесями Ag+, Cu+, In3+, Ga3+, As3+, Sb3+, Sn4+. Иногда синеватая побежалость (за счет тонких пленочек вторичного ковеллина).

Флотационные свойства. Относительно гидрофобны. Очень чувствительны к процессам окисления. Активно и избирательно взаимодействует с ксантогенатами.

Халькопирит - CuFeS2 . Химический состав постоянен; согласно химической формуле содержит 34,57% Cu; примеси Ag, Au, Ni, In, Cd, Re, Se, Te. Цвет халькопирита желто-золотистый; твёрдость 3,5 - 4 кгс/мин2 Плотность 4,1-4,2 г/см3;удельная электропроводность ?=10-2÷104 Ом·см ; удельная магнитная восприимчивость ? = 0,8 - 4,5·10-6 см3/г; смачиваемость плохая; ассоциации и парагенезисы - пентландит, кубанит, пирротин, пирит, борнит, сфалерит, галенит, блеклая руда.

Пирит-от греческого "пир"-огонь, за свойство давать при ударе искры; синоним- серный колчедан.

Пирит (серный колчедан) FeS2 ; состав Fe-46.5, S-53.5%; примеси Co, Ni, As, (Au, Cu, Ag, Sb и др.); твёрдость 6-6,5; цвет латунно-жёлтый, порошок зеленовато-чёрный; плотность 4,9-5,2; проводник электричества, ?=10-5 ÷10-1 Ом · м , ?= (0,2÷0,7) · 10-6 см3 /г; поведение при нагревании - экзотермический эффект окисления до гематита в интервале 380-700 ºС, в инертной атмосфере эндотермический эффект диссоциации в интервале 650-750ºС, tпл=1150 ºС; синонимы серный или железный колчедан; встречается в различных породах и месторождениях, самый распространённый сульфид земной коры.

Примеси в пирите типоморфны. Так максимальные примеси отмечены в пиритах Cu-Ni месторождений типа Норильск и Седбери и т.д.

Пириты осадочных пород имеют минимальное содержание примесей, хотя и здесь их содержание зависит от условий образования. Различны содержания примесей в пиритах, относящихся к разным стадиям развития одного и того же месторождения. Это позволяет широко использовать пирит для выяснения многих деталей генезиса и геохимии природных объектов.

Выделение. Огромные скопления зернистого пирита обнаружены во многих колчеданных залежах.

Широко распространены кристаллы пирита, в том числе метакристаллы. Габитус чаще кубический, пентагон-додекаэдрический, октаэдрический.

Флотация пирита этилксантогенатом заметно зависит от pH раствора (рисунок 3): максимум наблюдается в кислой области при pH<6; в щелочной среде флотация ухудшается и подавляется полностью при pH>8. на рисунке 2 показаны кривые прилипания пузырьков воздуха на пирите в присутствии диэтилдитиофосфата при различных pH раствора. При pH>6 для флотации пирита требуются большие дозировки собирателя; наоборот, при низких pH вплоть до pH=2 флотация пирита может быть вызвана небольшими расходами диэтилдитиофосфата.


Рисунок 1- Кривая прилипания пирита в зависимости от концентрации диэтилдитиофосфата натрия и величины pH. Область прилипания слева от кривой.


Рисунок 2- Флотируемость пирита в зависимости от значений pH (по Годену). Расход собирателя - этилксантогената калия - 140 г/т.


Кварц - один из самых распространенных минералов земной коры; природный кремнезем SiO2. Название происходит, вероятно, от нем. Querklüfterz, Quererz - "руда секущих жил". Цвет молочно-белый, серый, золотисто-желтый (цитрин), коричневато-желтый, реже - розовый, коричневый, черный (морион), фиолетовый (аметист), светло-голубой. Прозрачный бесцветный кварц называется горным хрусталем. Кварц с точечными включениями зеленых минералов окрашен в зеленый цвет (празем). Хрупкий. Излом раковистый. Твердость 7. Плотность 2,6-2,7. Кварц с включениями волокнистых минералов, ориентированных параллельно (обычно крокидолит либо обохренный крокидолит), приобретает шелковистый отлив - соответственно синий (соколиный глаз) или золотисто-коричневый (тигровый глаз). Прозрачный зеленый кварц, получаемый путем термообработки низкосортного аметиста или желтого кварца, - празеолит. Скрытокристаллический. Спайность обычно отсутствует. Сингония тригональная. Породообразующий минерал многих горных пород. На долю кварца приходится примерно 30-35% среднего состава гранитов и гранито-гнейсов, слагающих около 90% объема земной коры. Некоторые разновидности кварца - ценные ювелирные или поделочные камни (горный хрусталь, раухтопаз, цитрин, аметист и др.). Кварцевые пески используются для производства стекла, как формовочные пески при литье металлов, а также для изготовления бетона и штукатурок; тонкоизмельченный массивный кварц - абразивный материал; монокристаллы кварца служат пьезооптическим сырьем. Сплошной жильный кварц идет на плавку для получения кварцевого стекла. Месторождения кварца (пегматиты, альпийские жилы и россыпи) известны по всему миру. Наиболее привлекательные коллекционные кристаллы и высококондиционное сырье поставляют Бразилия, США, Украина.

Флотационные свойства. Активно флотируются собирателями катионного типа и жирными кислотами. Иногда необходима активация катионами пульпы. Флотационные свойства наиболее резко зависят от условий минералообразования.


Рисунок 6- Флотация кварца при различных рН в присутствии 1*10-4 М/л сульфоната и 1*10-4 М/л соли металла.


Таблица 1- Флотируемость основных минералов, входящих в состав полезного ископаемого

МинералыСобирателиВспени-вателиРегулято-ры средыАктива-торыПодави-телиВспомо-гательные реагенты и операцииСфалерит ZnSдитиокарбаматы; аэрофлоты, амины (моноизоамиламин, триизоамиламин), эфиры меркапто- карбоновой кислоты, дитиолы НS-R-SH, где R-C6-C18 (при рН 7-9,8), аэрофлоты, ксантагенаты. ОПСБ, Ди-(?-изобуток-си-) этиловый эфир диэтано-ламина (замени-тель соснового масла и крезола), циклогек-санол (замени-тель соснового масла и крезола), диметил-фталат, Т-80As2+, цикла-гексанол (обладает собира-тельны-ми свойст-вами).Na2S2O3, ЭКОФ Р-82 (натрий цинкпиро-сульфат), H2SO4, цинкциа-нидный аммоний-ный комплекс, эфиры целлюлозы-Халькопирит CuFeS2Ксантогенаты, диксантогенид, тиокарбанилид, тиофосфаты,алкил-сульфаты, дитиокарбаматы, додецилсульфат, CЦМ-2, углеводороды (для флотации крупных сростков). Минереки этинилвинилагки-ловые эфиры С3Н2СНОR и алкиловые ацетами тетролового альдегида С3Н3СН(ОR)2, где R-углеводородный радикал С4-Hg-C16H33, серузамещенные соли изотиомочевины ( при частичном окислении поверхности сульфидизация исключается). Крезилдитиофос-форные кислоты А,В и С, реагенты на основе арилдитиофосфор-ных кислот: аэрофлот 15, аэрофлот 25 (рН>7).Сосновое масло, терпинеол,пиридино-вые основания, ОПСБ, монобути-ловые эфиры смесь низших полиэти-ленгли-колей (при флотации с углеводо-родами), крезиловая кислота, МИБК, аэрофлоты, Т-80.CaO, H2SO3, H2SO4.H2SO3 , AgNO3 (при флотации медно-пирит- ных и медно-цинково- пирит-ных руд в извест- ковой среде).Na2S, NaCN, Zn(CN)2- Fe(CN)3- Fe(CN)64-, OH-, SO2 с NaCN, сочетание ZnSO4, Na2CO3 и Na2S2O4 (подавите-ли сфалерита и пирита при флотации меди из пиритных концентра- тов ксантоге-натами рН9), эфиры целлюлозыАниониты (АН-1, ЭДЭ-10П) - предотвра-щают депрессию медных минералов цианидом при флотации медно-цинковых руд.Пирит FeS2Ксантогенаты, аэрофлоты, жирные кислоты (в кислых средах)Сосновое масло, ОПСБ, ОПСМ, аэрофросы, дауфрос 250, Т-80 и др.Na2CO3, CaO, H2SO4.Na2S, Na2CO3, H2SO4, Na2SiF6.NaCN, CaO, Na2S, Na2Cr2O7, KMnO4, K2CrO4, Na2H, AsO3, эфиры целлюло-зы.CuSO4; Кварц SiO2Жирные и нафтеновые кислоты, амины первичные(доден-циламин), гексадециламин и их аммонийные соли) амины третичные (сапамин МS), соли гексадецилтри-метиламмония и додецилпириди-ния; Арил-1-аминотетрагидро-нафталины или их N-алкиловые дериваты, или четвертичные соединения (при рН=6-7); Соли алифатических аминоэфиров, продукт взаимодействия кубовых остатков от дистилляции гексаметиленди-амина и органических кислот (при флотации кварца из мартитовых руд).Сосновое масло, спирты.NaOH, Na2SiO3, H2SO4, HF, обтирка.Са2+ при флотации жирными кислота-ми, полига-ло-идалки-латы поливи-нилпи-ридинов при флотации анион-ными собира-телями, Al2(SO4)3 или AlCl3, Fe2(SO4)3 и FeSO4* 7H2O;Na2SiO3 (для подавле-ния активиро-ванного кварца), цианиды (при флотации окислен-ных руд карбоно-выми кислота-ми);Al3+, Fe3+.


Исходя из представленных выше рассуждений и основываясь уже известным опытам, в производствах обогащении медно-цинковых руд принимаем схему флотационного обогащения медно-цинковой руды для данного курсового проекта.


. Режимная карта отделения флотации


Реагенты, применяемые при флотации, обеспечивают высокую избирательность, стабильность и эффективность флотационного процесса, а также создают наибольшие возможности совершенствования и интенсификации этого метода обогащения. Состав флотационных реагентов весьма разнообразен. В их число входят органические и неорганические соединения, кислоты и щёлочи, соли различного состава, вещества, хорошо растворимые и практически нерастворимые в воде. В зависимости от назначения реагенты классифицируют следующим образом.

Собиратели. К собирателям относятся органические соединения, избирательно воздействующие на поверхность частиц определённых минералов и гидрофобизирующие её. Концентрируясь на поверхности раздела минерал-вода, собиратели гидрофобизируют частицы минерала и тем обеспечивают необходимое прилипание их к воздушным пузырькам.

Пенообразователи. Пенообразователи - поверхностно - активнее вещества, которые, концентрируясь на поверхности раздела вода-воздух, способствует сохранению воздушных пузырьков в дисперсном состоянии и препятствует их коалесценции. Пенообразователи увеличивают устойчивость флотационной пены повышением стабильности минерализованного пузырька, всплывающего на поверхность пульпы.

Регуляторы. Основным назначением реагентов этого класса является регулирование действия собирателей на частицы минералов, в результате которого повышается избирательность (селективность) флотационного процесса. В присутствии регулятора и благодаря его воздействию собиратель гидрофобизирует преимущественно лишь те минералы, которые должны переходить в пену.

Режимная карта отделения флотации медно-цинковой руды приведена в таблице 2.


Таблица 2- Режимная карта отделения флотации медно-цинковой руды

ОперацияПлот-ность пульпы, %pH, содержание свободной CaO, г/м3Расход реагентов, г/тБутиловый ксантогенатТ - 80 вспени-вательЦинко-вый купоросМедный купоросСернистый натрийОсновная медная флотация 309-10 100-700 200-500 50,0 30,0 270,0 ___ ___Контрольная медная флотация 309-10 100-700 200-500 25,0 14,0 45,0 ___ ___Основная цинковая флотация 409-10 100-700 200-500 40,0 20,0 ___ 400,0 150Контрольная цинковая флотация 309-10 100-700 200-500 20,0 5,0 ____ 75,0 ___

. Расчёт технологического баланса продуктов обогащения и принципиальной схемы флотации


В соответствии с заданием содержание меди в руде 1,5% , цинка 2,3%. Требуется получить медный концентрат с содержанием меди 18%, а цинковый концентрат содержит цинка 47% .


Рисунок 4 - Принципиальная схема обогащения медно-цинковой руды.


Таблица 3 - Технологический баланс продуктов обогащения

Наименование продуктовВыход, %Содержание, %Извлечение,%медьцинкмедьцинкМедный концентрат7,17187,828624,37Цинковый концентрат2,940,3470,5960Отвальные хвосты89,890,220,4013,4115,63Исходная руда1001,52,3100100Невязки расчётов0,000,00

Расчёты к таблице

выход медного концентрата:


gCu=eCu *aCu/bCu (1)

gCu=85*1,5/18=7,17%;


выход цинкового концентрата:


gZn=eZn*aZn/bZn (2)

gZn=60*2,3/47=2,94%;


выход хвостов:

gхв=gисх-gCu-gZn (3)

gхв=100,00-7,17-2,94=89,89%;


содержание меди в хвостах:


bСu/хв=(100*aCu-gCu*bCu-gZn*bСu/Zn)/ gхв , (4)

bСu/хв=(100*1,5-7,17*18-2,94*0,3)/89,89=0,22%;


содержание цинка в хвостах:


bZn/хв=(100*aZn-gCu*bZn/Сu-gZn*bZn)/ gхв , (5)

bZn/хв=(100*2,3-7,17*7,82-2,94*47)/89,89=0,40%;

eZn/Cu=gCu*bZn/Сu /aZn , (6)

eZn/Cu=7,17*7,82/2,3=24,37%;

eCu/Zn=gZn *bСu/Zn /aCu , (7)

eCu/Zn=2,94*0,3/2,3=0,59%;

eCu/хв=gхв *bСu/хв/aCu , (8)

eCu/хв=89,89*0,22/2,3=13,41%;

eZn/хв=gхв*bZn/хв/aZn , (9)

eZn/хв=89,89*0,4/2,3=15,63%.


"Узловым" продуктом в данной схеме являются хвосты медной флотации. Выход "узлового" продукта:


gу.п.=100-gCu=100-7,17=92,83%;


Затем определим содержание меди и цинка в хвостах медной флотации:

bCu у.п.=100*aCu-gCu* bСu/gу.п.=100*1,5-7,17*18/92,83=0,23%;

bZn у.п.= 100*aZn-gCu*bZn/gу.п.=100*2,3-7,17*7,82/92,83=1,87%;


4. Расчёт качественно-количественной схемы флотации


Цель расчёта заключается в определении выходов всех продуктов схемы флотации. Расчёт схемы ведётся отдельно по циклам.

. Расставляем по схеме показатели (?, ?, ?) относящиеся к исходной руде, конечным продуктам флотации, к узловому продукту.

. Пронумеровываем продукты обогащения.

. Массовую долю ценного компонента в концентрате определяется с учётом степени концентрации (i). В зависимости от типа сырья в основной и контрольной флотации i изменяется от 2 до 10, а в перечистках i не превышает 2.

Зададимся степенью концентрации меди в основной флотации: i = 8.


;

.


Составляем и решим уравнения баланса по II медной перечистки:


;

;

;

;

;

;

;

.


Решаем систему уравнений баланса для I медной перечистки:


;

;

;

;

.


Решаем систему уравнений баланса по узлу контрольной медной флотации:


; ;

;

;

.


Невязка цикла медной флотации определится выражением:


;

;

,77% = 180,77%;


Невязка по меди составляет 0,00%.

4. Зададимся степенью концентрации цинка в основной флотации: i=8.


;

.


Выхода и невязки расчетов цикла цинковой флотации находятся аналогично медной флотации.

Составим и решим уравнения баланса по II цинковой перечистки:


;

;

;

.


Решаем систему уравнений баланса для I цинковой перечистки:


;

;

;

.


Решаем систему уравнений баланса по узлу контрольной цинковой флотации:


;

;

;

.


Невязка цикла цинковой флотации определится выражением:


;

,72% = 231,71%;


Невязка по цинку составляет 0,01%.


Таблица 4 - Результаты расчёта качественно - количественной схемы флотации

ПоступаетВыходитНаименование продуктовВыход, %Содержание, %Наименование продуктовВыход, %Содержание, %медьцинкмедьцинкОсновная медная флотацияИсходная руда100,001,502,30Концентрат основной флотации11,0112,00 - Промпродукт I перечистки3,840,80 - Концентрат контрольной флотации15,391,80 - Хвосты основной флотации108,220,45 - Всего:119,231,52 - Всего:119,231,52 - Первая медная перечисткаКонцентрат основной флотации11,0112,00 - Промпродукт I перечистки3,840,80 - Хвосты II перечистки1,637,00 - Концентрат I перечистки8,8015,96 - Всего:12,6411,35 - Всего:12,6411,35 - Вторая медная перечисткаКонцентрат I перечистки8,8015,96 - Медный концентрат7,1718,00 - Промпродукт II перечистки1,637,00 - Всего:8,8015,96 - Всего:8,8015,96 - ПоступаетВыходитКонтрольная медная флотацияХвосты основной флотации108,220,45 - Хвосты контрольной Cu флотации92,830,231,87Концентрат контрольной флотации15,391,80 - Всего:108,220,45 - Всего:108,220,45 - СгущениеХвосты контрольной Cu флотации92,830,231,87Сгущенный продукт92,830,231,87Слив - - - Всего:92,830,231,87Всего:92,830,231,87Основная цинковая флотацияСгущенный продукт92,830,231,87Концентрат основной Zn флотации10,06 - 14,99Промпродукт I Zn перечистки7,12 - 1,80Концентрат конрольной Zn флотации11,24 - 4,00Хвосты основной Zn флотации101,13 - 0,80Всего:111,19 - 2,08Всего:111,19 - 2,08Первая цинковая перечисткаКонцентрат основной Zn флотации10,06 - 14,99Промпродукт I Zn перечистки7,12 - 1,80Промпродукт II Zn перечистки3,75 - 14,00Концентрат I Zn перечистки6,69 - 28,48Всего:13,81 - 14,72Всего:13,81 - 14,72Вторая цинковая перечисткаКонцентрат I Zn перечистки6,69 - 28,48Промпродукт II Zn перечистки3,75 - 14,00Цинковый концентрат2,94 - 47,00Всего:6,69 - 28,48Всего:6,69 - 28,48Контрольная цинковая флотацияХвосты основной Zn флотации101,13 - 0,80Отвальные хвосты89,890,220,40Концентрат конрольной Zn флотации11,24 - 4,00Всего:101,13 - 0,80Всего:101,13 - 0,80

5. Расчёт водно-шламовой схемы


Водно-шламовая схема рассчитывается с целью определения масс продуктов по операциям флотации и составления баланса по воде, обеспечения оптимальных плотностей и объемов пульпы, определения потребности воды по флотационному отделению.

Часовая производительность флотационного отделения определяется по формуле:



При семидневной работе в неделю по 24 часа в сутки производительность фабрики составила 242,95 т/ч.

Режим работы отделения приготовления реагентов односменный по режиму работы главного корпуса 343 дня в году.


Таблица 5- Результаты расчетов водно-шламовой схемы флотации


Таблица 6- Баланс воды по отделению флотации

ПоступаетВыходитНаименование продуктов и операцийм3/чНаименование продуктов и операцийм3/чИсходная руда516,28Медный концентрат22,16Смывная вода в основную медную флотацию33,65Смывная вода в I медную перечистку26,74Смывная вода во II медную флотацию23,51Цинковый концентрат9,85Смывная вода в основную цинковую флотацию22,00Смывная вода в I цинковую флотацию24,44Смывная вода во II цинковую флотацию17,88Слив сгустителя352,48Смывная вода в контрольную цинковую флотацию122,87 Отвальные хвосты402,87Всего:787,37Всего:787,37

Удельный расход воды, м3/т:


qуд.=W/Q=905,44/242,95=3,73 м3/т,


где W-расход воды, принимается по балансу воды, м3/ч;производительность по твердому, т/ч.


. Обоснование, выбор и расчёт флотационных машин и реагентного оборудования


Плотность руды рассчитывают по данным вещественного состава полезного ископаемого. Например, в медно-цинковой руде, содержащей 1,5% меди, 2,3% цинка, где медь представлена халькопиритом, а цинк-сфалеритом, 40% руды составляет пирит, остальное-породные минералы с плотностью 2700 кг/м3:


? =100/(?х/п /?х/п. +?сф /?сф+?пир/?пир+?кв/?кв),


где ?х/п, ?сф, ?пир, ?кв, - выхода соответственно халькопирита, сфалерита, пирита, кварца %;

?х/п, ?сф, ?пир, ?кв, -плотности соответственно халькопирита, сфалерита, смитсонита, малахита, азурита, пирита, кварца, г/см3.

Если содержание меди в руде-1,5 %, а в халькопирите-34,6 %, то:


?х/п=1,5 * 100/34,6 =4,33 %;


Найдем содержание сфалерита в руде-2,3%,, если в нём содержится 67,1% цинка, то:


?сф= 2,3 * 100/67,1 =3,42 %;


Находим породу:


?породы = 100 - (4,33+3,42+4,42+2,71+2,61+40) = 42,51 %;


Тогда плотность руды, кг/м3:


? =100/(4,33/4,2 +3,48/4 +4,42/4,4+2,71/4+2,61/4+40/5 +42,51/2,7) = 3,33 т/м3.


Таблица 7- содержания минералов в руде

Наименование минераловПлотность ?, кг/м3Выход ?, %сфалерит4,04,33халькопирит4,23,42смистонит4,44,42азурит 4,02,71малахит4,02,61нерудные2,794,53

После расчёта плотности руды определяется объём пульпы, поступающей в каждую операцию флотации, м3/мин

п=(Q/??+W)/60,


где Q - масса твёрдого, поступающего в операцию, т/ч; W - масса жидкого в пульпе, т/ч. Значения Q и W находят по результатам расчёта водно-шламовой схемы.

Объём пульпы, поступающей в основную медную флотацию, м3/мин:

п=(Q/??+W)/60=(289,67/3,33+692,98)/60=13 м3/мин;

Результаты расчётов объёмов пульпы по всем операциям флотации заносятся в таблицу 8.

Число параллельно работающих секций (N) флотационного отделения определяется соотношением объёма пульпы (Wп), поступающей в операцию флотации и максимальной производительности камеры по потоку пульпы (Vп) для выбранного типоразмера (табл.10):

= Wп / Vп;

N = Wп / Vп=13/25,00=0,5?1секция.


Необходимое количество камер (n), шт. определяют по формуле:


n = Wп * t /(Vк * ?),


где Wп - объём пульпы, поступающей в данную операцию, м3/мин; t - продолжительность (время) флотации, мин; Vк - геометрический объём камеры, м3; ? - коэффициент заполнения камеры, равный отношению полезного объёма камеры к геометрическому (? = 0,65-0,8).

Для основной медной флотации, шт:


n =13*18/(12,5 * 0,8) = 23,4 шт.


К установке принимается 24,0 камеры. Время пребывания пульпы в камере, мин:


tк = t /n =18/24 = 0,75 мин.


Результаты выбора и расчёта флотационных машин сведены в таблицу 8.

Таблица 8 - Сводные данные расчёта флотомашин

ОперацияW пульпы, м3/минЧисло секции флотационного отделенияЧисло принятыхПродолжительность флотации, минТипоразмер машины,геом. размер камеры, м3Число камерПринятые числа камерВремя пребывание пульпы в камере, минОсновная медная флотация13,000,511812,523,4240,75Первая медная перечист-ка1,920,61101,615,0160,63Вторая медная перечист-ка1,030,3171,65,761,17Контрольная медная флотация12,110,511512,518,2180,83Основная медная флотация7,530,311812,513,6141,29Первая цинковая перечистка1,780,61101,613,9140,71Вторая цинковая перечистка0,790,2171,64,361,17Контрольная цинковая флотация8,790,411512,513,2141,07

При необходимости длительного перемешивания пульпы с реагентами, её аэрации или кондиционирования перед флотацией устанавливают контактные чаны. Вместимость чана (Vч) рассчитывается по формуле, м3:

ч=Q?(R+1/R)?t/1440,


где R-отношение Ж:Т.

Для основной медной флотации:


Vч=289,67*(70,52/29,48+29,48/70,52)*3/1440=1,70,


принимается чан КЧ-1,6.

Для основной цинковой флотации:

ч=289,67(57,8/42,16+42,16/57,84)*3/1440=1,18,

принимается чан КЧ-1,6.

Для точной и равномерной подачи реагентов в процесс флотации используют питатели реагентов. Конструкция питателя зависит от физических свойств применяемого реагента, чаще всего подаваемого в пульпу в жидком виде и реже - в твёрдом. Сводные данные выбора и расчёта питателей флотационных реагентов сведены в таблицу 9.


Таблица 9 - Сводные данные расчёта питателей флотационных реагентов

РеагентТочка подачиКонцентрация раствора или эмульсии, %Расход, г/тРасход, см3/минТип питателяКоли-чество питателейБутиловый ксантогенатОсновная медная флотация5504049,24ПРИ-41Бутиловый ксантогенатКонтрольная медная флотация5252191,1ПРИ-41Т- 80Основная медная флотация10030121,477ПД-31Т- 80Контрольная медная флотация1001461,3505ПД-31Цинковый купоросОсновная медная флотация1027010932,9ПРИ-41Цинковый купоросКонтрольная медная флотация10602629,31ПРИ-41Сернистый натрийДесорбция 7,71508644,07ПРИ-41Бутиловый ксантогенатОсновная цинковая флотация5403007,23ПРИ-41Бутиловый ксантогенатКонтрольная цинковая флотация5201637,94ПРИ-41Т- 80Основная цинковая флотация1002075,1809ПД-31Т- 80Контрольная цинковая флотация10050204,742ПД-31Медный купоросОсновная цинковая флотация1040015036,2ПРИ-41Медный купоросКонтрольная цинковая флотация10753071,13ПРИ-41

7. Составление схемы движения пульпы, компоновка оборудования в отделении флотации


Задача составления схемы движения заключается в распределении операций флотации по флотационным машинам. При этом должны соблюдаться, по крайней мере, два обязательных условия:

максимальный самотёк продуктов и возможно меньшее число их перекачек (особенно пенных продуктов) насосами;

поток пульпы, проходящий через флотационные машины, должен быть оптимальным.

На рисунке 2 изображена схема рационального распределения операций флотации во флотационных машинах. Питание (пульпа) подаётся в первую камеру основной медной флотации, пройдя через машину и через хвостовой карман последней камеры основной поступает на контрольную флотацию. После контрольной флотации выходят хвосты и концентрат, который направляется в первую камеру основной медной флотации, куда поступают и хвосты I перечистки. Концентрат основной флотации подаётся в головную камеру I перечистки. Концентрат I перечистки идёт в первую камеру II перечистки, хвосты которой поступают на I перечистку, а пенный продукт II перечистки является готовым продуктом (медным концентратом). Цинковая флотация проходит аналогично.

При компоновке оборудования во флотационном отделении общие габариты последнего приближены к квадрату. Соблюдены требования по технике безопасности: ширина прохода между желобами 1м, проход между оборудованиями не менее 700 мм, на перепадах высот предусмотрены ограждения и лестницы.

Флотомашины размещены на одном уровне (), поэтому для перекачки пульпы предусмотрены насосы расположенные на отметке ± 0,000 м. Под флотомашинами предусмотрены специальные опорные конструкции изолированные от основного каркаса.

Отведено место ремонтной площадке, расположенной на уровне земли, ширина площадки 6 м.

Для сбора переливов предусмотрена система дренажных канав, полы имеют уклон 3° в сторону этих канав.


Список использованной литературы


1.Барский Л.А., Данильченко Л.М. Обогатимость минеральных комплексов. - М: Недра, 1977, с. 59-77.

.Богданова О.С. Теория и технология флотации руд. - М: Недра, 1990, с. 358-363.

.Клебанов О.Б. Реагентное хозяйство обогатительных фабрик. - М: Недра,1989, с.191.

.Годовиков А.А. Минералогия. - М: Недра, 1983, с. 89-90-109- 229-518.

.Куликов Б.Ф., Зуев В.В., Вайншенкер И.А., Митенков Г.А. Минералогический справочник технолога - обогатителя. - Л: Недра, 1985, с. 235-223-202-175-143.

.Богданова О.С. Справочник по обогащению руд. Обогатительные фабрики. - М: Недра, 1984, с. 39-46-50.


Теги: Отделение флотации флотационной фабрики производительностью 2 млн. т/год  Курсовая работа (теория)  Другое
Просмотров: 39698
Найти в Wikkipedia статьи с фразой: Отделение флотации флотационной фабрики производительностью 2 млн. т/год
Назад