Рассмотрение синтезов соединений с пятичленными циклами

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования

«ПЕНЗЕНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Медицинский институт

Кафедра «Стоматология»


Курсовая работа

по дисциплине: Материаловедение»

На тему: Оттискные материалы»


Выполнил:

Саидкулов М.К.


Пенза 2012 г.

Содержание


Введение

Глава 1. Определение оттискные материалы

Глава 2. Классификация оттискных материалов

.1 Твердые оттискные материалы

.2 Эластические оттискные материалы

.2.1 Альгинатные массы

.2.2 Силиконовые массы

.2.3 Полисульфидные (тиоколовые) оттискные материалы

.2.4 Полиэфирные оттискные материалы

.3 Термопластические (обратимые) оттискные материалы

Заключение

Список литературы


Введение


Целью моей курсовой работы является изучение оттискных материалов, применение их в стоматологии, способы изготовления оттиска, использование его при работе, а также применение некоторых известных современных российских оттискных материалов.


Глава 1. Определение оттискные материалы


Оттискные материалы применяют для получения точного отпечатка зубов и тканей полости рта. По этому отпечатку или оттиску можно отливать модель, на которой изготавливают конструкции полных или частичных съемных зубных протезов, коронок, мостовидных протезов и вкладок.

В течение многих лет было создано большое разнообразие оттискных материалов и разработано множество способов для их применения в практике с целью получить материал для снятия оттисков с оптимальным сочетанием необходимых для этого свойств.

Некоторые оттискные материалы не обладают достаточной вязкостью для применения в стандартной ложке, к ним относятся цинк-оксид-эвгенольные, полиэфирные и полисульфидные эластомеры. Другие, такие как оттискные компаунды (термопластичные оттискные материалы), гипс, альгинатные и силиконовые материалы соответствующего состава, можно применять для снятия оттисков с помощью стандартной оттискной ложки. Хотя термопластичные компаунды можно применять со стандартной оттискной ложкой, но получаемые при этом оттиски не воспроизводят точно поверхностные детали, если их не уточняют дополнительным оттиском с помощью текучего цинк-оксид-эвгенольного материала. Подобным образом и альгинаты, когда их используют с применением стандартной оттискной ложки, не всегда дают требуемую степень точности, в таком случае лучше снимать оттиск с индивидуальной ложкой.

Выбор оттискного материала и типа ложки зависит от требуемого уровня размерной точности и воспроизводимости деталей поверхности.


Глава 2. Классификация оттискных материалов


Большое значение для получения точного оттиска имеют пластичность, т.е. применительно к оттискным массам - способность заполнить все элементы рельефа поверхности прикосновения, и эластичность, т.е. способность сохранить приданную форму при выведении оттиска из полости рта без остаточной деформации.

Все стоматологические оттискные материалы можно условно разделить на:

üтвердые;

üэластические;

üтермопластические.


.1 Твердые оттискные материалы


В работе стоматологических учреждений важно соблюдать правила хранения гипса. Полуводный стоматологический гипс обладает значительной гигроскопичностью, поглощая атмосферную влагу, он портится, и схватывание его становится хуже. Поэтому рекомендуется хранить гипс в хорошей упаковке, желательно в сухом и теплом месте и не на полу. Это препятствует его отсыреванию. Длительное хранение гипса даже в хорошо укупоренной таре и без доступа влаги делает его непригодным, так как гипс слеживается в комки, а иногда вовсе не схватывается. Объясняется это тем, что полугидрат является нестойким соединением и между его частицами происходит перераспределение воды, в результате чего образуется более устойчивое соединение - двугидрат и ангидрид.


2(CaS04) х Н20 -> CaS04 х 2Н20 + CaS04


В зависимости от условий термической обработки полуводный гипс может иметь две модификации - а- и бета-полугидраты, которые отличаются физико-химическими свойствами:

а-гипс получают при нагревании двуводного гипса под давлением 13 атм., что заметно повышает его прочность. Этот гипс называют супергипсом, автоклавированным, каменным гипсом;

бета-гипс получается нагреванием двуводного гипса при атмосферном давлении.

Гипс после обжига размалывают, просеивают через особые сита и фасуют в мешки из специальной бумаги или в бочки. Схватывание гипса протекает очень быстро. Сразу же после смешивания с водой становится заметным загустение массы, но в этот период гипс еще легко формуется. Дальнейшее уплотнение уже не позволяет проводить формовку. Свежеприготовленный гипс и ранее затвердевшее изделие из гипса прочно соединяются между собой. Этим свойством пользуются в зубопротезной технике, например, при гипсовке моделей в артикуляторе или кювете.

Практика показывает, что разделение двух гипсовых изделий, например оттиска и модели, можно осуществить без применения изолирующих веществ. Чтобы ослабить связь между ними, оттиск предварительно погружают в воду до полного насыщения, т. е. до вытеснения всего воздуха из его пор. Насыщенный водой оттиск не может больше поглощать влагу из нанесенной на его поверхность свежеприготовленной гипсовой массы. Однако наряду с положительными качествами гипс имеет ряд недостатков, в результате чего за последние годы он почти полностью вытеснен другими материалами. В частности, гипс хрупок, что часто приводит к поломке оттиска при выведении из полости рта. При этом мелкие детали его, заполняющие пространство между зубами, нередко теряются. Этот недостаток гипса особенно проявляется в случаях, когда имеет место дивергенция и конвергенция зубов, их наклон в язычную или щечную стороны, а также при заболеваниях парадонта, когда внеальвеолярная часть зубов увеличивается.

Кроме того, гипсовый оттиск с трудом, путем раскалывания на фрагменты, выводится из полости рта, плохо отделяется от модели, не дезинфицируется. Поэтому гипс, особенно сверхтвердых сортов, гораздо чаще применяется как вспомогательный материал, в основном для получение моделей челюстей.

Известно множество разновидностей гипса, выпускаемого для нужд ортопедической стоматологии. В соответствии с требованиями международного стандарта (ISO) по степени твердости выделяют 5 классов гипса:- мягкий, используется для получения оттисков (окклюзионных оттисков);

II - обычный, используется для наложения гипсовых повязок в общей хирургии (данный тип гипса в литературе иногда обозначается термином «медицинский гипс»);

III - твердый, используется для изготовления диагностических и рабочих моделей челюстей в технологии съемных зубных протезо;

IV - сверхтвердый, используется для получения разборных моделей челюстей;

V - особотвердый, с добавлением синтетических компонентов. Данный вид гипса обладает увеличенной поверхностной прочностью. Для замешивания требуется высокая точность соотношения порошка и воды.

К твердым оттискным материалам относятся также цинкоксидэвгеноловые пасты, среди которых наибольшее распространение имеет чешский Репин, представляющий собой 2 алюминиевые тубы с белой (основная) и желтой (катализаторная) пастами. В состав катализаторной пасты входят:

гвоздичное масло (эвгенол) - 15%;

канифоль и пихтовое масло - 65%;

наполнитель (тальк или белая глина) - 16%;

ускоритель (хлористый магний) - 4%.

Обе пасты смешиваются в равном соотношении. Реакция преципитации, приводит к затвердеванию материала, которое ускоряется при интенсивном замешивании, добавлении влаги и повышении температуры. Материал предназначен для получения функциональных оттисков, особенно с беззубых челюстей.


.2 Эластические оттискные материалы


Данная группа включает несколько подгрупп материалов для от тисков:

·альгинатные;

·силиконовые (полисилоксаны);

·полисульфидные (тиоколовые);

·полиэфирные.

Последние три подгруппы объединяются понятием «синтетические эластомеры».


.2.1 Альгинатные массы

Современные альгинатные материалы выпускаются в виде многокомпонентного мелкодисперсного порошка. К последнему врач прибавляет водопроводную холодную воду. Пропорция порошка и воды определяется прилагаемыми мерниками. Альгинатный порошок перемешивается с помощью шпателя в резиновой чашке в течение 30-40 с до получения однородной пасты. В таком виде она готова для получения оттиска. Время схватывания для разных масс составляет от 2-2,5 до 5 мин. О готовности массы судят по состоянию ее остатков в резиновой чашке. Не следует ориентироваться на консистенцию массы самого оттиска, так как наружные слои его твердеют под влиянием температуры полости рта быстрее, чем глубокие. Преждевременное выведение оттиска из полости рта приводит к его деформации. Оттиск выводится достаточно резким стягивающим движением, чтобы уменьшить остаточную деформацию.

Многочисленные перфорации ложки, а также полоска лейкопластыря, которой врач окантовывает ее края, удерживают оттискной материал в ложке. После выведения из полости рта оттиск ополаскивается струей проточной воды от ротовой жидкости. Альгинатный оттиск быстро изменяет свой объем: на воздухе он дает усадку, в воде - набухает.

Можно в течение нескольких минут сохранять альгинатный оттиск в мокрой марлевой салфетке, но лучше сразу же получить гипсовую модель. Для дезинфекции альгинатных оттисков используют специальные растворы.

В состав альгинатной композиции должны входить следующие основные компоненты:

альгинат одновалентного катиона;

сшивагент;

регулятор скорости структурирования;

наполнители;

индикаторы;

корригирующие вкус и цвет вещества.

Альгинатные оттискные материалы обладают способностью через 15-20 мин уменьшаться в объеме более чем на 1,5%. При погружении оттисков в воду усадка прекращается и начинается резкое увеличение линейных размеров за счет поглощения воды. Величина расширения зависит от состава альгинатной композиции. Поэтому все рекомендации по хранению альгинатного оттиска в воде, влажной ткани, эксикаторе, насыщенном парами воды, не могут быть приняты.

К достоинствам альгинатных оттискных материалов необходимо отнести высокую эластичность, хорошее воспроизведение рельефа мягких и твердых тканей полости рта, простоту применения.

Основными их недостатками можно считать отсутствие прилипания к оттискным ложкам и некоторую усадку, наступающую через несколько минут после получения оттиска, в результате потери воды.

Альгинатные массы применяются при протезировании больных с частичной потерей зубов съемными протезами, для получения предварительных оттисков с беззубых челюстей, а также в ортодонтии для изготовления аппаратов и диагностических моделей челюстей.

По данным некоторых исследователей [Поюровская И.Ю.], на международном стоматологическом рынке сегодня представлено свыше 80 наименований различных альгинатных оттискных масс.

В клиниках России до недавнего времени был широко представлен альгинатный материал Стомальгин (Украина). При его замешивании с водой образуется однородная паста. Оттиски имеют достаточную пластичность и эластичность, при наполнении гипсом почти не деформируются. Стомальгин отличается высокими эластичными и прочностными свойствами: остаточная деформация его при сжатии составляет 2,5%, прочность на разрыв - 0,15 Н/мм2.

Оттиск из материала Стомальгин должен быть использован для получения гипсовых моделей тотчас после выведения из полости рта, последующей промывки его водой и дезинфекции. Получение модели необходимо производить жидким гипсом, не создавая при этом значительного давления на оттиск. Отделение гипсовой модели от эластичного оттиска может проводиться без применения каких-либо инструментов: он снимается с модели путем оттягивания краев пальцами.

Рабочее время - интервал, измеряемый от начала замешивания материала при комнатной температуре до достижения им полного затвердения или повышенной вязкости, когда манипулирование материалом становится затруднительным или невозможным.

Время затвердевания - часть рабочего времени, характеризующая период изменения агрегатного состояния материала от готовности к манипуляции (получение оттиска, фиксация несъемного протеза) до состояния полного затвердевания или резиноподобного состояния и сопровождающаяся изменением его физико-механических свойств.

Применительно к оттискным материалам период затвердевания предполагает минимальное количество времени пребывания (нахождения) ложки с оттискным материалом в полости рта.

Кромальган - альгинатный оттискной материал фирмы «Медстар» (Великобритания) с трехцветным индикатором фазы (альгинат класса «А»). Может быть использован для получения оттисков при протезировании цельнолитыми и штампованными коронками, дуговыми (бюгельными) и полными съемными протезами.

Представляет собой порошок светлого цвета, с приятным ванильным ароматом. Техника применения материала - традиционная для всех альгинатов, но сопровождается цветовыми превращениями. Время замешивания составляет 30 с. При этом паста имеет фиолетовый оттенок. До введения в полость рта врач имеет в запасе 1,5 мин, пока масса не станет розовой. Полный период с момента окончания замешивания до готовности оттиска равен 1 мин. Цвет оттискной массы становится белым.

Материал отличается следующими характеристиками:

возможностью зрительного контроля рабочего времени;

отсутствием пыли;

возможностью регулировать консистенцию замешивания;

высокой эластичностью и прочностью на разрыв (1,20 МПа);

высокой точностью воспроизведения деталей (50 микрон);

возможностью сохранения размеров оттиска в течение нескольких часов в герметичной упаковке;

оптимальной совместимостью с гипсами, т. е. образованием твердых, гладких поверхностей моделей челюстей;

отсутствием свинца и консервантов.

? Тиксотропия (греч. thixis - прикосновение, trope - поворот, изменение) - способность дисперсных систем восстанавливать исходную структуру, разрушенную механическим воздействием.


.2.2 Силиконовые массы

Силиконовые массы появились в стоматологии в 50-е годы. Сейчас они являются бесспорными лидерами среди современных оттискных масс. Созданы на основе кремнийорганических полимеров - силиконовых каучуков. В большинстве своем предназначены для получения двойных оттисков. Выпускаются в виде двух паст - основной и катализаторной. В качестве катализатора может также использоваться жидкость, прилагаемая к основной пасте. Консистенция пасты предопределяет ее клиническое назначение после приготовления (смешивания):

·пасты высокой вязкости (основная и катализаторная пасты или основная паста и катализаторная жидкость) используются самостоятельно или в качестве первого, основного слоя в двойных оттисках;

·пасты средней вязкости (основная и катализаторная пасты) используются для получения функциональных оттисков или при реставрации съемных протезов;

·пасты низкой вязкости (основная и катализаторная пасты или основная паста и катализаторная жидкость) используются в качестве второго или корригирующего слоя в двойных оттисках.

Для приготовления смеси к необходимому количеству основной пасты, отмеренному с помощью дозировочной бумажной шкалы, подложенной под стеклянную пластинку, добавляют катализаторную жидкость или пасту. Они замешиваются с помощью пластмассового шпателя до получения однородной консистенции или окраски. Паста плотной консистенции (высокой вязкости) набирается специальными мерниками и после добавления жидкости-катализатора перемешивается в руках. Время замешивания составляет 30-45 с. Одни силиконовые массы затвердевают уже через 2,5-4 мин, другие - через 5-8 мин.

Оттискная ложка с перфорациями окантовывается лейкопластырем, как при использовании альгинатных масс, или покрывается адгезивом.

Чаще получение двойного оттиска проводится в два этапа. На первом этапе на смазанную адгезивом оттискную ложку наносится смешанная с катализатором основная плотная паста и снимается оттиск. При этом, чтобы создать пространство для корригирующей пасты, процедуру проводят до препарирования зубов, или не снимая временные коронки, или предварительно покрыв оттискной материал полоской тонкой полиэтиленовой пленки.

Первый слой оттиска индивидуализирует стандартную ложку, которой он был получен. На нем срезается слой пасты на своде нёба и по краям оттиска для его свободного повторного введения в полость рта. Кроме того, удаляются межзубные перегородки для предотвращения отдавливания межзубных сосочков. И наконец, гравируются отводные канавки от отпечатков зубов к вершине нёбного свода, радиально, для предупреждения упругой деформации оттиска.

Затем первый слой отпечатка высушивается и заполняется уточняющей пастой. Из карманов извлекаются нити, сами карманы высушиваются струей теплого воздуха. Они могут быть заполнены корригирующей пастой с помощью специального шприца с изогнутой канюлей. Можно снимать оттиск и без применения шприца, наполняя уточняющей пастой оттиск и вновь вводя его в полость рта.

Существует одноэтапный способ получения двуслойного оттиска. При этом, заполнив ложку основной пастой, врач делает углубления в ней в области проекции опорных зубов. Туда вводится корригирующая паста. Она же из шприца наносится на препарированные зубы. После этого ложка с двумя пастами вводится в полость рта для получения оттиска.

Следовательно, при получении двойного оттиска используются основные пасты, обладающие высокой вязкостью, и корригирующие пасты, характеризующиеся низкой вязкостью. Паста же средней вязкости применяется для получения функциональных оттисков с беззубых челюстей. Для этого пасту после замешивания с катализатором наносят тонким равномерным слоем на внутреннюю поверхность индивидуальной ложки. Ложку с массой прижимают к челюсти и с помощью функциональных проб оформляют края оттиска.

Таким образом, силиконовые материалы используются при дефектах зубов, частичной и полной потере зубов. Их основным предназначением является получение двойных оттисков для комбинированных коронок, облицовок и вкладок, позволяющих прояснять препарированные на опорных зубах полости или поддесневой уступ. Кроме того, они применяются для получения функциональных оттисков, а также для перебазирования протезов, при объемном моделировании базисов полных съемных протезов.

Применяемые силиконовые материалы отличаются между собой механизмом реакции полимеризации. Полимеризация - химическая реакция, при которой из двух или нескольких молекул одного и того же вещества получается соединение, имеющее тот же состав, но более высокий молекулярный вес. Другими словами, это процесс превращения мономеров в полимеры.

По этому признаку к данной группе материалов относятся винилполисилоксановые материалы, скорость полимеризации которых находится в прямой зависимости от температуры - чем выше температура, тем выше скорость полимеризации. Винилполисилоксановые материалы являются самыми размеростабильными из всех ныне существующих в мире материалов.

Во втором случае образуются побочные продукты (чаще вода, реже аммиак, спирты), и поэтому элементарный состав мономера и полимера различен.

Основная паста материалов, полимеризующихся по типу поликонденсации, состоит из силикона со сравнительно низким молекулярным весом - диметилсилоксана, имеющего реактивные конечные гидроксильные группы. Наполнителями могут быть карбонат меди или кремнезем. Катализатор является либо жидкостью, состоящей из суспензии октоата олова и алкилсиликата, либо пастой с добавлением сгущающего агента. Реакция протекает с образованием каучука с трехмерной структурой и с освобождением этилового спирта.

Тип силиконового материала, полимеризующийся по типу полиприсоединения, представлен пастами низкой, средней, высокой вязкости и также является полисилоксаном. Основная паста состоит из полимера с умеренно низким молекулярным весом и силановыми группами, а также наполнителя (диатомит, белая сажа). Катализаторная паста представлена полимером с умеренно низким молекулярным весом и виниловыми конечными группами, а также катализатором - хлороплатиновой кислотой. Реакция полиприсоединения не создает низкомолекулярных продуктов.

Следует помнить о том, что при замешивании двух паст руками в резиновых (латексных) перчатках сера из них может попадать в силиконовый материал и снижать активность платиносодержащего катализатора. Результатом этого является замедление или полное отсутствие затвердевания пасты. Поэтому необходимо смачивать перчатки водой либо слабым раствором дезинфицирующего средства. Виниловые перчатки не обладают этим побочным действием латексных.

Одним из лучших представителей силиконовых оттискных материалов является японский Экзафлекс, содержащий 2 основные пасты (желтого и голубого цветов). Смешивание их заканчивается при однородном зеленом окрашивании материала.

Физико-механические свойства силиконовых материалов. Известно, что их усадка невелика. Она начинается с момента смешивания основной пасты с катализатором и сшивагентом и обусловлена процессом вулканизации полиметилсилоксана.

Силиконовые оттискные материалы позволяют точно отобразить рельеф протезного ложа (в том числе в функционирующем состоянии), обладают низкими усадкой и остаточной деформацией, различной на выбор степенью вязкости, легко отделяются от модели и прочны. Их недостатком является лишь плохое прилипание к ложке.


.2.3 Полисульфидные (тиоколовые) оттискные материалы

Полисульфидный полимер обладает конечными и незавершенными боковыми меркаптеновыми группами. Указанные группы смежных молекул окисляются катализатором, приводя, с одной стороны, к расширению цепочки и, с другой - к сшиванию молекулы. Результатом реакции является быстрое возрастание молекулярного веса и превращение пасты в каучук. Несмотря на получение каучука уже через 10 мин, реакция продолжается еще несколько часов. Заметной деформации оттиска при его выведении препятствует сшивка материала. Консистенция материала зависит от количества наполнителя.

Выпускаются в виде двух паст - основной и катализаторной. Наиболее активный ингредиент катализаторной пасты - двуокись свинца - всегда присутствует в ней с некоторым количеством окиси магния. Отбеливающие агенты бессильны замаскировать черный цвет двуокиси свинца. Поэтому полисульфидные пасты имеют оттенки от темно-коричневых до серо-коричневых.

В качестве заменителей двуокиси свинца могут использоваться другие окислители, например гидроокись меди или органические перекиси. Они придают массе зеленый цвет. Однако у полисульфидных каучуков имеются и другие недостатки (неприятный, плохо исправляемый запах, недостаточная эластичность оттиска), позволяющие силиконовым материалам выигрывать конкуренцию. В России известны американский полисульфидный материал КОЕ-флекс, немецкий Пермластик, который имеет 3 степени вязкости, они и определяют его использование как для получения двойного, так и для однослойных анатомических и функциональных оттисков.

Кроме того, отличная эластичность и высокая прочность на разрыв позволяют по одному оттиску получить несколько гипсовых моделей. Материал выгоден и тем, что при необходимости уточнения каких-либо деталей тканей протезного ложа к уже полученному оттиску можно добавлять свежую порцию материала и проводить его коррекцию, вводя оттиск в полость рта.


.2.4 Полиэфирные оттискные материалы

Обычно применяются в форме пасты средней консистенции (основной и катализаторной). Основная паста представляет собой полиэфир с умеренно низким молекулярным весом и этиленовыми кольцами в качестве концевых групп.

? Пластификация - это повышение пластичности и эластичности материала. Выделяют 3 типа пластификации: наружную, внутреннюю и механическую.

? Наружная пластификация достигается введением в полимер пластификаторов с целью уменьшения сил межмолекулярного взаимодействия.

? Внутренняя пластификация достигается за счет реакции сополимеризации. Применяя разные мономеры и изменяя соотношение между ними, можно целенаправленно изменять свойства получаемых сополимеров: эластичность, прочность, водопоглощаемость и теплостойкость.

? Механическая пластификация осуществляется путем целенаправленной ориентации молекул полимера, нагретого выше температуры стеклования и последующего охлаждения в растянутом состоянии.

В основную и катализаторную пасты могут добавляться красители. Полиэфирные пасты также могут быть высокой и низкой вязкости. Наиболее распространенными представителями полиэфирных материалов являются Импрегум и Пермадин (фирма «ЭСПЭ», Германия), тиксотропная консистенция (текучесть под давлением и сохранение устойчивости без давления в оттискной ложке) и гидрофильность которых обеспечивают точность отпечатка тканей протезного ложа.


.3 Термопластические (обратимые) оттискные материалы


Особенностями этой группы оттискных материалов являются их размягчение и затвердевание только под воздействием изменения температуры. При нагревании они размягчаются, при охлаждении затвердевают. Эти многокомпонентные системы создаются на основе природных или синтетических смол, наполнителя, модифицирующих добавок, пластификаторов и красителей.

В качестве термопластических веществ применяются также парафин, стеарин, гуттаперча, пчелиный воск, церезин и др. Термопластические массы при многократном температурном воздействии могут терять пластичность. Представителем материалов с ограниченной обратимостью является Стенс.

Термомассы должны:

) размягчаться при температуре, не вызывающей боли и ожогов тканей полости рта;

) не быть липкими в интервале «рабочих» температур;

) затвердевать при температуре несколько большей, чем температура полости рта;

) в размягченном состоянии представлять однородную массу;

) легко обрабатываться инструментами.

Из-за отсутствия эластичности материала возникают деформации («оттяжки») тех участков оттиска, которые располагаются в поднутрениях. Ввиду этого, а также вследствие высокой плотности термопластические массы не выдерживают конкуренции с резиноподобными материалами (эластомерами). Их основное назначение сегодня - окантовка краев оттискной ложки, подслаивание защитных пластинок после уранопластики.


Заключения

стоматология материал термопластический оттиск

При ортопедическом лечении получение оттиска является одним из ключевых моментов, определяющих качество будущей конструкции. Это обусловлено тем, что оттиск является связующим, информационным звеном между врачом и зубным техником. Этот этап зубного протезирования имеет исключительно важное значение, поскольку точность оттиска определяет качество модели, на которой осуществляется конструирование любого протеза или лечебно-диагностического аппарата.

В моей курсовой работе я рассмотрел оттискных материалов,их классификацию и виды.


Список литературы


1.Аболмасов Н.Г., Аболмасов Н.Н., Бычков В.А., Аль-Хаким А. «Ортопедическая стоматология». - Москва. 2002.

.Безрукова В.М. Справочник по стоматологии. - Москва, Медицина, 2008. - 477с.

3.Боровский Е.В. Руководство к практическим занятиям по терапевтической стоматологии. - М.: Медицина, 2003. - 18с.

.Вязьмитина А.В. Материаловедение в стоматологии. Ростов н/Д, 2002-191с.

5.Дойников А.И., Синицын В.Д. «Зуботехническое материаловедение». Москва. 2006.

6.Зубопротезная техника. /Л.Д. Чулак, В.Г. Шутурминский - Одесса, 2001 г. - 315 с.

7.Клинеберг И., Джагер Р.; Под общ.ред. М.М.Антоника. Окклюзия и клиническая практика - М.: МЕДпресс-информ, 2006. - 200с.

.Король М.Д., Коробейников Л.С., Киндий Д.Д., Ярковий В.В. Оджубейська О.Д. Тактика курации больных в клинике ортопедической стоматологии. Полтава: Астрая, 2003. - 52 с.

.Криштаб С.И. Ортопедическая стоматология. К.: Вища школа,2006. - 440с.

.Нападов А.Л. Артикуляция и протезирование в стоматологии.- К.: Здоровья, 2004.

.Неспрядько В.П. , Макеев В.Ф. Перспективные направления развития ортопедической стоматологии. Комплексное лечение и профилактика стоматологических заболеваний // Материалы 7 съезда стоматологов УССР ( г. Львов , 3-5 октября 1989 г. ) - Киев , 2000. - с. 241-242.

.Неспрядько В.П., Рожко М.М. Ортопедическая стоматология. Киев, Книга плюс, 2003.

13.Пахомова Г.Н. Основы организации стоматологической помощи населению. - М.: Медицина, 2007. - 121с.

14.Погодин В.С., Пономарева В.А. Руководство для зубных техников. - М.: Медицина, 2001. - 313с.

15.Скорикова Л.А., Волков В.А., Баженова Н.П., Лапина Н.В., Еричев И.В. Пропедевтика стоматологических заболеваний. 2002 г.

16.Трезубов В.Н. Ортопедическая стоматология. Пропедевтика. 2001 г.


Теги: Рассмотрение синтезов соединений с пятичленными циклами  Курсовая работа (теория)  Химия
Просмотров: 2769
Найти в Wikkipedia статьи с фразой: Рассмотрение синтезов соединений с пятичленными циклами
Назад