Природа химической связи и изомерия в комплексных соединениях


Природа химической связи и изомерия в комплексных соединениях

Содержание


1.Метод валентных связей

2.Теория кристаллического поля

.Изомерия комплексных соединений

Литература

1.Метод валентных связей


Развитие представлений о природе комплексных соединений тесно связано с созданием и развитием общей теории химической связи. Уже в 20-х годах появились первые работы, применявшие идеи ионной и ковалентной связи к комплексным соединениям. Так, Косселю и Магнусу принадлежит большая заслуга в разработке электростатических представлений, а приложение идеи о парноэлектронной связи разрабатывалось в работах Сиджвика.

В дальнейшем было разработано три квантовомеханических метода: МВС, теория кристаллического поля (ТКП) и ММО. Ни один из этих методов не предназначался для объяснения связи только в комплексных соединениях, но и в этой области применение их оказалось весьма успешным. Они не являются противоположными друг другу. Наоборот, во многих отношениях они дополняют друг друга, трактуя одни и те же вопросы с различных точек зрения, и зачастую приводят к идентичным результатам.

МВС, являющийся развитием идей о парноэлектронной связи, широко использовался в 30 - 40-х годах. В последующее десятилетие он уступил место ТКП, которая представляет собой возрождение электростатических представлений на квантовомеханической основе. Усовершенствованная модель ТКП, учитывающая наличие в комплексах определенной доли ковалентной составляющей, известна под названием теории поля лигандов (ТПЛ). Наиболее современным и универсальным методом, охватывающим все случаи взаимодействия, является ММО. Интерес к этому методу и количество полученных при помощи его результатов непрерывно возрастают. Несмотря на это в настоящее время из трех квантовомеханических методов ведущую роль играет ТКП, при помощи которой более просто с меньшей затратой труда получено наибольшее количество результатов.

По простой электростатической модели (Коссель и Магнус, 1916 - 1922) взаимодействие между комплексообразователем и ионными или полярными лигандами подчиняется закону Кулона. При этом предполагается, что образующие комплекс частицы представляют собой недеформируемые шары с определенным зарядом и радиусом. Устойчивый комплекс получается, когда силы притяжения к ядру комплекса уравновешивают силы отталкивания между лигандами. При дальнейшем увеличении числа лигандов силы отталкивания между ними возрастают и комплекс становится непрочным. Эта модель позволила для ряда комплексов металлов оценить устойчивость, предсказать координационные числа и пространственное расположение лигандов.

На основе кулоновского взаимодействия заряженных частиц с учетом принципа наименьшей энергии системы были рассчитаны оптимальные значения координационных чисел. Так, для комплексообразователей в степени окисления +1 координационная валентность (KB) равна 1 или 2; для степени окисления +2 КВ = 2, а для +3 KB = 4,5 или 6. Кроме того, было показано, что наиболее распространенным координационным числам 2, 4, 6 соответствуют линейные, тетраэдрические и октаэдрические комплексы.

Согласно закону Кулона, прочность комплекса увеличивается с ростом заряда и уменьшением радиусов комплексообразователя и лигандов. Например, для галогенокомплексов алюминия [AlГ4]- устойчивость убывает в направлении от фторокомплексов к йодокомплексу, так как в этом ряду закономерно растет размер лигандов. Устойчивость комплексов с одними и теми же лигандами в более высокой степени окисления комплексообразователя всегда выше. Например:


К[Cu+(NH3)2]+ = 10-11 и К[Cu2+(NH3)4]2+ = 10-13

К[Fe2+(CN)6]4- = 10-24 и К[Fe3+ (CN)6]3- = 10-31


Так как силы отталкивания между ионами больше, чем между нейтральными лигандами, координационное число в комплексе с ионными лигандами оказывается меньше, чем в комплексе с дипольными молекулами. С ионными лигандами Со2+ дает комплексы с КВ = 4, тогда как с дипольными молекулами координационное число возрастает до 6:


[Со(С2O4)2]2- и [Co(CNS)4]2-, но [Со(Н2O)6]2+ и [Со(NH3)6]2+


Электростатическая теория очень наглядна, и потому для качественных выводов ею широко пользуются и теперь. Однако она не в состоянии объяснить целый ряд фактов: 1) почему существуют комплексы с неполярными лигандами и комплексообразователем в нулевой степени окисления, например [Fe(CO)5], [Са(NH3)6] и др.; 2) почему комплексы переходных металлов второго и третьего рядов характеризуются большей устойчивостью сравнительно с комплексами переходных металлов первого ряда. При одинаковом заряде размеры ионов второго и третьего рядов переходных металлов больше, чем у первого, и поэтому по электростатическим представлениям комплексы тяжелых металлов должны были быть менее устойчивыми; 3) чем обусловлены магнитные и оптические свойства комплексных соединений.

Весьма наглядным способом описания комплексных соединений является МВС, предложенный и разработанный Полингом в 30-х годах, вскоре после создания квантовой механики. В основе метода лежат следующие положения:

. Связь между комплексообразователем и лигандами донорно-акцепторная. Лиганды предоставляют электронные пары, а ядро комплекса - свободные орбитали. Мерой прочности связи служит степень перекрывания орбиталей. При этом учитываются только угловые функции, вкладом радиальной составляющей пренебрегают.

. Орбитали центрального атома, участвующие в образовании связи, подвергаются гибридизации. Тип гибридизации определяется числом, природой и электронной структурой лигандов. Гибридизация электронных орбиталей комплексообразователя определяет геометрию комплекса.

. Дополнительное упрочнение комплекса обусловлено тем что наряду с ?-связями могут возникать и ?-связи. Это происходит, если занятая электронами орбиталь центрального атома перекрывается с вакантной орбиталью лиганда. Перераспределение электронной плотности в результате ?- и ?-связывания происходит в противоположных направлениях: при возникновении ?-связи идет перенос на комплексообразователь, при ?-связывании - от него к лигандам.

. Магнитные свойства, проявляемые комплексом, объясняются исходя из заселенности орбиталей. При наличии неспаренных электронов комплекс парамагнитен. Спаренность электронов обусловливает диамагнетизм комплексного соединения.

Рассмотрим, как МВС описывает электронную структуру и свойства некоторых комплексов, образованных металлами первого переходного ряда: медью, цинком, никелем и кобальтом. Напомним, электронные структуры ионов указанных металлов-комплексообразователей:



При образовании комплекса распределение электронов на d-орбиталях комплексообразователя может оставаться таким же, как у изолированного иона, или испытывать изменения (см. табл. 7). В приведенных примерах медь, никель (в [NiCl4]2-) и кобальт (в [CoF6]3-) сохранили электронную структуру катионов, в то время как в остальных комплексах произошло спаривание электронов. Освобождающиеся электронные орбитали участвуют в образовании ?-связей с лигандами. Как видно из табл. 7, при образовании октаэдрических комплексов гибридизация может осуществляться либо с использованием внутренних (n - 1) d-орбиталей ([Co(NH3)6]3+), либо внешних nd-opбиталей ([CoF6]3-]. В табл. 7 собственные электронные пары комплексообразователя изображены стрелками, а электронные пары лигандов, ответственные за донорно-акцепторные ?-связи, представлены пунктирными стрелками.

При внешней гибридизации связи образуют более удаленные и менее плотные 4d-орбитали. Степень перекрывания электронных облаков при этом меньше, и связь лигандов с комплексообразователем слабее, чем при внутренней гибридизации. Поэтому в комплексе [CoF6]3- замещение ионов фтора идет легко и он более реакционноспособен, чем [Co(NH3)6]3+, в котором гибридизация внутренняя. Приведенные в табл. 7 электронные структуры комплексов правильно отражают их магнитные свойства. Так, [Cu(NH3)2]+, [Zn(NH3)4]2+, [Ni(CN)4]2-, [Со(NН3)6]3+ диамагнитны: у них нет неспаренных электронов. В противоположность им [NiCl4]2- и [CoF6]3- парамагнитны. При этом парамагнетизм этих соединений пропорционален числу неспаренных электронов.


Таблица 7

Некоторые комплексы металлов в МВС


МВС дает возможность трактовать комплексы с нейтральными лигандами. Например, в карбонилах роль комплексообразователей играют атомы переходных металлов в нулевой степени окисления. Лигандами являются нейтральные молекулы окиси углерода. Карбонилы - диамагнитные вещества, поскольку все электроны металла спарены. Ниже приведена картина заселенности электронных орбиталей нейтральных атомов железа и никеля, а также карбонилов этих металлов (Fe(CO)5] и [Ni(CO)4]:



Если атом металла содержит нечетное число электронов, то возникает кластер со связью металл-металл. Например, карбонил марганца имеет состав [Mn2(CO)10] и является кластером:



В ряду [Ti(CO)4], [Cr(CO)6], [Fe(CO)5], [Ni(CO)4] все имеющиеся у металла валентные электроны заселяют d-орбитали. Оставшиеся свободными (n - 1)d-, s- и p-орбитали используются для образования донорно-акцепторной связи с неподеленными электронными парами углерода в молекулах СО. МВС имеет некоторые недостатки:

. Пригоден для описания только ограниченного круга веществ. Комплексные соединения с многоцентровыми связями МВС совсем не рассматривает.

. Не объясняет и не предсказывает оптические свойства комплексных соединений, так как не учитывает возбужденные состояния.

. Не дает оценку энергий для различных структур комплексов. Поэтому не может объяснить, почему комплексы некоторых металлов, построенные в форме квадрата, отличаются достаточной прочностью и не переходят в более симметричные тетраэдрические комплексы.


. Теория кристаллического поля

изомерия валентный химический связь

Теория кристаллического поля (ТКП) основывается на электростатической модели. Поэтому можно считать, что она является дальнейшим развитием на квантовомеханической основе электростатической теории Косселя и Магнуса. Согласно ТКП связь между ядром комплекса и лигандами ионная или ион-дипольная. При этом комплексообразователь рассматривается с детальным учетом его электронной структуры, а лиганды - как бесструктурные заряженные точки, создающие электростатическое поле. Основное внимание ТКП уделяет рассмотрению тех изменений, которые происходят в комплексообразователе под влиянием поля лигандов.

Вырождение орбиталей, характерное для изолированного атома или иона металла, в поле лигандов снимается. Причина снятия вырождения - различие в форме орбиталей и их ориентации в пространстве. На рис. 23 показано расположение d-орбиталей комплексообразователя для октаэдрического комплекса.


Рисунок 23. Ориентация d-орбиталей комплексообразователя в октаэдрическом поле лигандов

Электронная плотность орбиталей dz и dx2-y2 сконцентрирована вдоль координатных осей, тогда как орбитали dxy, dxz, dyz расположены по биссектрисам между осями. Поэтому электроны dz2 и dx2-y2 -opбиталей (обозначаемых d?) испытывают со стороны отрицательно заряженных лигандов большее отталкивание, чем электроны трех других орбиталей, называемых d?. В результате энергия d?- орбиталей повышается, а d?-орбиталей понижается, т. е. происходит энергетическое расщепление (рис. 24). При этом d?-орбитали дважды вырождены, а d?-орбитали - трижды. Энергетическое расстояние между d?- и d?-орбиталями называется энергией расщепления и обозначается Dq = Dокт. Так как средняя энергия орбиталей должна быть неизменной, то понижение трехкратновырожденных d?-орбиталей должно быть скомпенсировано повышением двукратновырожденных d?-орбиталей. Поэтому d?-орбитали располагаются на 0,6Dq выше, а d? - на 0,4Dq ниже средней энергии вырожденных d-орбиталей в поле лигандов.


Рисунок 24. Расщепление энергетических уровней d-орбиталей в октаэдрическом поле


В тетраэдрическом комплексе (рис. 25) орбитали dz2 и dx22 испытывают меньшее отталкивание от лигандов и потому обладают более низкой энергией, чем орбитали dxy, dxz, dyz. Энергетическое расщепление для тетраэдрического поля лигандов представлено на рис. 26.

Рисунок 25. Расположение d-орбиталей комплексообразователя в тетраэдрическом поле лигандов комплексообразователей


Рисунок 26. Расщепление энергетических уровней d-орбиталей в тетраэдрическом поле


Поля другой симметрии дают более сложную картину расщепления. Величина энергии расщепления D, являющаяся мерой силы кристаллического поля, зависит от природы образующих комплекс частиц и от симметрии поля. Установлено, что расщепление увеличивается с ростом заряда комплексообразователя. В группах Периодической системы при прочих равных условиях расщепление растет с переходом от легких к тяжелым.

Объясняется это тем, что при повышении главного квантового числа орбитали простираются в пространстве дальше и поэтому сильнее взаимодействуют с лигандами. Расщепление, получаемое в комплексах одного и того же комплексообразователя с различными лигандами, убывает в следующем порядке:

- > NO2- > NH3 > H2O > F- > OH- > Cl- > I-

Эта последовательность лигандов по создаваемому кристаллическому полю называется спектрохимическим рядом.

Распределение электронов комплексообразователя по расщепленным энергетическим уровням в слабом поле подчиняется общим принципам; а) первоочередного заполнения наиболее низких уровней; б) Гунда; в) Паули. Однако в сильных полях при достаточном числе электронов происходит полное заполнение орбиталей с низкой энергией сначала по одному, а затем по два электрона на каждой орбитали (спаривание). Лишь после этого начинают заполняться электронные орбитали с высокой энергией. Спаривание требует затраты энергии Р, так как оно принуждает электроны находиться в одной области околоядерного пространства и тем самым увеличивает отталкивание между ними.

Величина Р рассчитывается методами квантовой механики и может быть определена экспериментально из спектральных данных. Энергия спаривания электронов падает в группах по мере увеличения атомного веса комплексообразователя, так как орбитали с увеличением главного квантового числа становятся все более диффузными и поэтому уменьшается отталкивание спариваемых электронов.

Заселение электронами орбиталей в каждом конкретном случае зависит от соотношения между величинами энергий расщепления D и спаривания Р. При D < Р (слабое поле) электроны будут занимать разные орбитали и спины их параллельны. Комплексы при этом высокоспиновые. При D > Р (сильное поле) электроны спариваются на d?-уровнях, и в результате образуются низкоспиновые комплексы. Наконец, при D = Р оба состояния (высоко- и низкоспиновое) равновероятны. Средняя энергия спаривания для ионов первого ряда переходных металлов в аквокомплексах значительно превышает энергию расщепления. Поэтому в них не происходит спаривания электронов комплексообразователя, т. е. они должны быть парамагнитными и высокоспиновыми комплексами, что и наблюдается в действительности.

Рассмотрим распределение d-электронов иона Со3+ при образовании октаэдрических комплексов [CoF6]3- и [Со(NН3)6]3+. В изолированном ионе Со3+ внешние электроны располагаются следующим образом:



В слабом поле лигандов F- энергия расщепления мала: D < Р, и заселение электронов по орбиталям Co3+ такое же, как и в свободном ионе. В сильном же поле, создаваемом молекулами аммиака (спектро-химический ряд), D > Р и энергетически более выгодно, когда электроны иона Со3+ располагаются только на ds-орбиталях. В соответствии с этим комплекс [CoF6]3- является высокоспиновым, а [Co(NH3)6]3+ - низкоспиновым. При этом в первом случае осуществляется внешняя sp3d2-гибридизация, а во втором - внутренняя. В результате комплекс [CoF6]3- парамагнитен, а [Co(NH3)6]3+ диамагнитен.

Окраска комплексных соединений. Наряду с магнитными свойствами представление о расщеплении энергетических уровней ком-плексообразователя может быть использовано для объяснения окраски комплексных соединений. Предположим, что у комплексообразователя налицо электрон, который в основном состоянии находится на орбитали d? (при октаэдрической координации). Если сообщить комплексу квант энергии, как раз отвечающий разности энергий между уровнями d? и d?, то он поглотится, а электрон перейдет на уровень d?. Состояние возбуждения существует недолго, и система возвратится в исходное состояние. Этот процесс происходит непрерывно, а так как он связан с поглощением квантов определенной энергии, излучение будет поглощаться избирательно. Значит комплексное соединение будет окрашенным.

Эти закономерности наблюдаются в водном растворе солей титана Тi3+ и ванадия V4+. Единственный d-электрон, например, в ионе [Тi(H2O)6]3+ переходит с d? на d? (поглощая свет), что и обусловливает фиолетовую окраску комплекса. Таким образом, цвет комплекса обусловлен величиной энергии расщепления. Происхождение окраски комплексов может иметь и другую природу. Иногда окраска является результатом так называемого переноса заряда. Интерпретация этого вида спектров в рамках ТКП невозможна.

Достоинства и недостатки ТКП. ТКП, так же как и МВС, качественно объясняет основные факты химии комплексных соединений: координационные числа, пространственные структуры, магнитные и оптические свойства. Тем не менее ТКП несовершенна. Исходя из предположения о ионном характере связи, она хорошо объясняет и дает близкие к опыту расчетные величины для комплексов с недеформируемыми или малополяризующимися лигандами, т. е. если доля ковалентной составляющей в связи невелика. При значительной доле ковалентности расчетные величины, характеризующие комплекс, не согласуются с опытными данными. Не улучшается положение и при введении представлений о поляризации и индуцированных диполях.

Подход к изучению комплексных соединений в ТКП является односторонним. Детально разбирая изменения центрального атома, ТКП вовсе не учитывает ни структурных особенностей лигандов, ни склонности некоторых из них образовывать ?-связи. Невозможность учета влияния ?-связей не позволяет рассмотреть с позиций ТКП некоторые вопросы комплексообразования, стереохимии и реакционной способности. ТКП имеет ограниченную применимость, так как она не применима к таким комплексам и таким свойствам, для которых существенна детальная структура лигандов.

ТКП приложима лишь к комплексным соединениям, в которых комплексообразователь содержит свободные электроны. Поэтому она не позволяет изучать не только все производные непереходных элементов (В, Si, Sn, Sb), но и многие производные переходных (Sc3+, Ti4+, Nb5+ и др.). Кроме того, энергетический эффект расщепления по сравнению с общей энергией комплексообразования невелик (не превышает 10%). Поэтому применимость ТКП ограничена теми свойствами, которые практически не зависят от абсолютной величины энергии.

Основным затруднением ТКП является то, что она не учитывает частично ковалентный характер связей металл-лиганд. Поэтому все эффекты, обусловленные ковалентным характером связи, в простом методе ТКП остаются необъясненными. С другой стороны, ТКП позволяет очень легко и просто рассчитать (для своих объектов) значения многих характеристик комплексов. В противоположность этому расчеты по ММО значительно более трудоемки. По объему полученных при помощи ТКП результатов она все еще занимает ведущее положение в ряду таких методов, как МВС и ММО.

Усовершенствованная модель ТКП, в которой электростатическое взаимодействие дополнено идеей перекрывания орбиталей, называется теорией поля лигандов (ТПЛ). Она с успехом применяется к большому числу комплексов переходных металлов в обычных степенях окисления, где величины перекрываний электронных облаков не слишком велики. В тех же комплексах, где перекрывание существенно, методы ТКП и ТПЛ непригодны. Для описания подобных комплексов надо пользоваться ММО.


. Изомерия комплексных соединений


В химии комплексных соединений изомерия очень распространена. Различают сольватную, ионизационную, координационную, оптическую и другие виды изомерии.

Сольватная (в частности гидратная) изомерия обнаруживается в отдельных изомерах, когда распределение молекул воды между внутренней и внешней сферой оказывается неодинаковым. Например, для гексааквохром (3+) хлоридов известны такие три изомера:


[Сr(Н2O)6]С13 [Сr(Н2O)5С1]С12 Н2O [Сr(Н2O)4С12]Cl 2O

фиолетовый светло-зеленый темно-зеленый


Валовый состав всех измеров одинаковый. Но в первом случае все шесть молекул воды находятся во внутренней сфере, во втором - пять, а в третьем - только четыре. Так как структура этих комплексов различна, различны и их свойства (спектры поглощения, количества хлора, осаждаемые нитратом серебра из свежеприготовленных растворов изомеров, и т. п.).

Ионизационная изомерия связана с различной легкостью диссоциаации ионов из внутренней и внешней сферы комплекса. Примерами ионизационных изомеров могут служить


[Со(NН3)5Вr]SO4 [Со(NН3)5SO4]Вr

красно-фиолетовый красный


Координационные емкости лигандов SO42- и Вr- для этих соединений одинаковы и равны 1. Первая соль дает осадок с раствором BaCl2, но не дает с AgNO3. Вторая реагирует с раствором нитрата серебра, но не образует осадка с хлоридом бария. Объясняется это тем, что в структуре первого соединения ион SO42- находится во внешней сфере, а ион Br- - во внутренней сфере. Во втором комплексе все наоборот.

Координационная изомерия встречается только у бикомплексных соединений. Например,


[Рt(NН3)3С1][Рd(NH3)С13] и [Рd(NH3)3С1][Рt(NH3)С13]

[Co(NH3)6][Fe(CN)6] и [Fе(NН3)6][Со(СN)6]


Солевая изомерия, или изомерия связи, возникает тогда, когда монодентатные лиганды могут координироваться через два разных атома. Например, ион NO2- может присоединяться к центральному атому через азот или через кислород. Это обусловливает существование у иридия, кобальта и некоторых других металлов двух изомеров:


[(NH3)5 - Ir - NO2]Cl2 и [(NН3)5 - Ir - ONO]С12


Роданид-ион также может координироваться через разные атомы (азот или сера), например:


[(CO)5Mn - SCN]+ и [(CO)5Mn - NCS]+


Таким образом, изомерия связи может наблюдаться у лигандов, которые содержат, по крайней мере, два разных атома с неподеленными электронными парами.

Пространственная (геометрическая) изомерия обусловлена тем, что в комплексах металлов лиганды могут занимать различные места вокруг комплексообразователя. Так как одинаковые лиганды располагаются либо рядом (цис-положение), либо напротив (транс- положение), этот тип изомерии часто называют цис-транс-изомерией.

Цис-транс-азомерия характерна для октаэдрических и квадратных комплексов. Она невозможна для тетраэдрических структур, а также для соединений с координационным числом 2 и 3. Число изомеров, т. е. число вариантов расположения лигандов, зависит как от строения комплексного соединения, так и от количества неодинаковых лигандов.

Для квадратных комплексов типа МА4 и МА3В (М - комплексо-образователь) возможен только один вариант пространственного расположения. Для комплексов типа MA4B3 имеются два изомера. Примером может служить дихлородиамминплатина:

цис -изомер транс -изомер

(оранжевые кристаллы) (желтые, менее растворимые в воде кристаллы)


Два изомера возможны и для соединений типа MA2BC. Для соединений с четырьмя разными заместителями возможны уже три геометрических изомера. Так, для комплекса [Pt(NO2)NH3(NН2ОН)С6Н5N]+ возможны следующие изомеры:



Октаэдрические комплексы типа МА6 и МА5В не имеют изомеров, так как в октаэдре все положения равноценны. Для комплексов МА4В2 возможны два геометрических изомера:


цис-изомер транс -изомер (оранжевые кристаллы) (желтые кристаллы)


Цис- и транс-изомеры отличаются друг от друга физическими и химическими свойствами. Получаются они при окислении хлором соответствующих цис- и транс-форм квадратных комплексов, (например


[Pt2+ (NH3)2Cl2] + Cl =[Pt4+ (NH3)2Cl]

цис-форма квадратного цис -форма октаэдрического комплекса комплекса


По два изомера может быть получено у комплексов MA3B3. При увеличении числа неодинаковых лигандов число геометрических изомеров растет. Для соединений с шестью разными лигандами должно существовать 15 изомеров. Изучение геометрической изомерии имело большое значение для установления пространственного строения комплексных соединений. На основании того, что для комплексов MA2B2 и МА4В2 удавалось синтезировать по два изомера, Вернер приписал им квадратное и октаэдрическое строение. Подавляющее большинство комплексных соединений MA2B2 изомеров не имеет. Для них Вернер постулировал тетраэдрическую структуру. Все предположения были позднее подтверждены современными методами исследования строения вещества.


Литература


2.Аналитическая химия. Физические и физико-химические методы анализа./ Под ред. О.М.Петрухина. - М., 2005

3.Артеменко А.И. Органическая химия.- М., 2006

.Ахметов Н.С. Общая и неорганическая химия.- М., 2003

.Биологическая химия./Под ред.Ю.Б.Филипповича,Н.И.Ковалевская,Г.А.Севастьяновой. - М., 2005

.Биохимия./Под редакцией В.Г.Щербакова. - СПб., 2003

.Вольхин В.В. Общая химия. Избранные главы. - СПб, М, Краснодар., 2008

.Вольхин В.В. Общая химия. Основной курс. - СПб, М, Краснодар., 2008

.Гельфман М.И., Юстратов В.П. Химия. - СПб, М, Краснодар., 2008

.Глинка Н.Л. Общая химия. - М., 2005

.Говарикер В.Р., Васванатхан Н.В., Шридхар Дж.М. Полимеры. - М., 2000

.Гранберг И.И. Органическая химия. - М., 2002

.Дорохова Е.Н., Прохорова К.В. Аналитическая химия. Физико-химические методы. - М., 2004

.Евстратова К.И., Купина Н.А., Малахова Е.Е. Физическая и коллоидная химия. - М., 1990

.Зимон А.Д., Лещенко Н.Ф. Коллоидная химия.- М., 2003

.Зимон А.Д. Физическая химия.- М., 2003

.Ипполитов Е.Г., Артемов А.В., Батраков В.В. Физическая химия.- М., 2005

.Ким А.М. Органическая химия. - Новосибирск, 2007


Теги: Природа химической связи и изомерия в комплексных соединениях  Контрольная работа  Химия
Просмотров: 37478
Найти в Wikkipedia статьи с фразой: Природа химической связи и изомерия в комплексных соединениях
Назад