Антиоксиданты, их роль в биологии и медицине

ГБОУ ВПО «Волгоградский государственный медицинский университет»

Министерства здравоохранения Российской Федерации

Кафедра химии


реферат

АНТИОКСИДАНТЫ, ИХ РОЛЬ В БИОЛОГИИ И МЕДИЦИНЕ


Выполнила: студентка 27 группы,

курса, лечебного факультета

Науменко Т.С.

Проверила: ассистент каф. химии,

Танкабекян Назели Арсеновна


Волгоград - 2014 г.


Содержание


1.Понятие антиоксидантов

.Свободные радикалы и их влияние

.Классификация антиоксидантов

.Механизмы действия антиоксидантов

.Влияние антиоксидантов на организм человека

.Природные антиоксиданты, их действие и нормы потребления

.1Витамин С

.2Витамин Е

.3Селен

.4Бета-каротин и другие каротины

.5Убихинон

.Влияние антиоксидантов на процесс старения

.Список используемой литературы

1.Понятие антиоксидантов


Антиоксиданты - это вещества, ингибирующие перекисное окисление липидов, стабилизирующие структуру и функции мембран клеток и создающие оптимальные условия для гомеостаза клеток и тканей при самых разнообразных чрезвычайных воздействиях патогенных факторов на организм. Именно поэтому их широко применяют при лечении многих заболеваний и для защиты пищевых продуктов и лекарственных препаратов от окисления кислородом. При любых чрезмерных воздействиях на организм факторов психической, физической и химической природы происходит увеличение перекисного окисления липидов, которое является пусковым механизмом мембранной патологии.

Антиоксиданты в большинстве своем являются витаминами, которые очищают организм от свободных радикалов, которые постоянно образуются в организме человека в результате многочисленных окислительно-восстановительных процессов, направленных на поддержание нормального функционирования всех органов и систем. В естественных условиях количество свободных радикалов мало, и их действие на клетки организма полностью подавляется поступлением извне антиоксидантов, при потреблении человеком пищи, содержащей эти вещества.


.Свободные радикалы и их влияние


Свободные радикалы - это продукты неполного восстановления кислорода, это молекулы с неспаренными электронами, находящимися на внешней оболочке атома. Они обладают очень высокой реакционной способностью и, как следствие, выраженным повреждающим действием на клеточные макромолекулы. В понятие свободного радикала не включаются ионы металлов переменной валентности, неспаренные электроны которых находятся на внутренних оболочках. Множество болезненных состояний (хронические заболевания, стресс, действие радиации, процесс старения и др.) протекают в организме с образованием свободных радикалов, которые способны обратимо или необратимо разрушить вещества всех биохимических классов, включая и свободные аминокислоты, липиды, углеводы и молекулы соединительных тканей. Кроме того, к повышенному образованию свободных радикалов в организме приводят прием препаратов с прооксидантными свойствами, проведение ряда лечебных процедур (кислородотерапия, гипербарическая оксигенация, ультрафиолетовое облучение, лазерная коррекция зрения, лучевая терапия), а также различные экологически неблагоприятные факторы окружающей среды. В этом состоянии свободные радикалы ловят уязвимые протеины, ферменты, липиды и даже целые клетки. Отнимая электрон у молекулы, они инактивируют клетки, тем самым, нарушая хрупкий химический баланс организма. Когда процесс происходит снова и снова, начинается цепная реакция свободных радикалов, при этом разрушаются клеточные мембраны, подрываются важные биологические процессы, создаются клетки-мутанты.

В случае, когда свободные радикалы окисляют липиды, происходит образование опасной формы липидного пероксида. Их избыток ведет к окислению липидов - основы клеточных мембран - и, в результате, к нарушению функций мембран клеток нашего организма, к нарушению здоровья и преждевременному старению. Избыточная активация процессов цепного свободнорадикального окисления липидов может привести к накоплению в тканях таких продуктов, как липоперекиси, радикалы жирных кислот, кетоны, альдегиды, кетокислоты, что, в свою очередь, может привести к повреждению и увеличению проницаемости клеточных мембран, окислительной модификации структурных белков, ферментов, биологически активных веществ.

Перекисное окисление липидов возрастает при многих заболеваниях, поэтому его можно считать универсальным патологическим мембранным процессом, к которому наиболее чувствительны плазматические мембраны, мембраны митохондрий, микросом.

Общие признаки мембранной патологии, вызванной увеличением перекисного окисления липидов являются:

Повышение гидрофильности мембран, вследствие чего увеличивается их проницаемость для ионов кальция и других ионов.

Разобщение процессов дыхания и фосфорилирования.

Нарушение ферментных функций.

Ослабление связи фосфолипидов со структурными и рецепторными белками мембран.

Инактивация тиоловых ферментов, SH-групп аминокислот, белков.

Повреждение ДНК.

Набухание и лизис мембран, в частности лизосом, и выход из них фосфолипаз и других гидролитических ферментов, вызывающих нарушение клетки.

Таким образом, выраженное длительное усиление перекисного окисления липидов приводит к уменьшению детоксикации эндогенных веществ и ксенобиотиков, дистрофии, а затем к гибели клеток и инфаркту ткани.


.Классификация антиоксидантов

антиоксидант старение каротин радикал

1. Антирадикальные средства ("скэвинджеры" - от англ. "Scavengers" - мусорщики):

.1. Эндогенные соединения: a-токоферол (витамин Е), кислота аскорбиновая (витамин С), ретинол (витамин А), b-каротин (провитамин А), убихинон (убинон).

.2. Синтетические препараты: ионол (дибунол), эмоксипин, пробукол (фенбутол), диметилсульфоксид (димексид), олифен (гипоксен).

. Антиоксидантные ферменты и их активаторы: супероксиддисмутаза (эрисод, орготеин), натрия селенит.

. Блокаторы образования свободных радикалов: аллопуринол (милурит), антигипоксанты.


.Механизмы действия антиоксидантов


Механизм действия наиболее распространённых антиоксидантов (ароматические амины, фенолы, нафтолы и др.) состоит в обрыве реакционных цепей: молекулы антиоксиданта взаимодействуют с активными радикалами с образованием малоактивных радикалов. Окисление замедляется также в присутствии веществ, разрушающих гидроперекиси (диалкилсульфиды и др.). В этом случае падает скорость образования свободных радикалов. Даже в небольшом количестве (0,01-0,001 %) антиоксиданты уменьшают скорость окисления, поэтому в течение некоторого периода времени (период торможения, индукции) продукты окисления не обнаруживаются. В практике торможения окислительных процессов большое значение имеет явление синергизма - взаимного усиления эффективности антиоксидантов в смеси, либо в присутствии других веществ. Антиоксиданты действуют как ловушки для свободных радикалов. Отдавая электрон свободному радикалу, антиоксиданты останавливают цепную реакцию. Правильная регуляция этого баланса помогает организму расти, вырабатывать энергию.

Можно выделить следующие пути действия антиоксидантов.

1.1-й путь - связан с непосредственным воздействием антиоксидантов на свободные радикалы и их роль в иммунном ответе. Как правило, этот путь связан с подавлением синтеза простагландинов и активацией клеток антиген-неспецифического иммунитета. К антиоксидантам, обладающим таким механизмом действия, относятся жирорастворимый витамин Е и ?-каротин. Эти антиоксиданты не синтезируются в организме, а поступают с пищей или в виде пищевых добавок, и, как правило, действуют в плоскости липидных мембран, не проникая в цитоплазму клеток;

2.2-й путь - зависит от более гидрофильных антиоксидантов, способных проникать в цитоплазму клеток и регулировать уровень экспрессии различных факторов (например, ядерного фактора) и изменять процесс экспрессии провоспалительных генов. К этой группе веществ относятся не только антиоксиданты (глутатион, мелатонин), но и промоторы синтеза и восстановления глутатиона, не обладающие прямыми антиоксидантными свойствами (аскорбиновая кислота, рибофлавин, витамин В6, цинк, селен, медь и др.);

.3-й путь - сочетание двух выше приведенных механизмов (кофермент Q10, карнозин, растительные биофлавоноиды, хлорофиллы, катехины);


. Влияние антиоксидантов на организм человека


Процессы перекисного окисления липидов постоянно происходят в организме и имеют важное значение для обновления состава и поддержании функциональных свойств биомембран, энергетических процессов, клеточного деления, синтеза биологически активных веществ, внутриклеточной сигнализации.

Влияние антиоксидантов на наш организм очень многогранно и интересно. Применяя эти вещества, можно предостеречь себя от многих болезней и воздействия на организм свободных радикалов. За последние несколько лет было показано, что антиоксиданты крайне полезны для организма - они предотвращают развитие сердечно-сосудистых заболеваний, защищают от рака и преждевременного старения, также повышают иммунитет и многое другое. Последнее десятилетие дало множество свидетельств, доказывающих, что свободные радикалы играют определенную роль в развитии многих заболеваний.

Как же работают антиоксиданты? В организме существует система антиоксидантной защиты, которая делится на первичную (антиоксиданты-ферменты) и вторичную (антиоксиданты-витамины). Эта система работает у нас с рождения, всю нашу жизнь, слабея постепенно с годами. Поэтому возникает необходимость ее подпитки и поддержки. Антиоксиданты-ферменты (первичная антиоксидантная защита) занимаются "уборкой" активных форм кислорода. Они превращают активные формы кислорода в перекись водорода и в менее агрессивные радикалы, а затем уже их превращают в воду и обычный, полезный кислород. Антиоксиданты-витамины (вторичная антиоксидантная защита) называют "тушителями". Они "тушат" агрессивные радикалы, забирают избыток энергии, тормозят развитие цепной реакции образования новых радикалов. К ним относятся:

·водорастворимые витамины - витамин C, P;

·жирорастворимые витамины - витамин A, E, K, бета-каротин;

·серосодержащие аминокислоты (цистеин, метионин)

·микроэлементы - цинк.

Очень важно помнить, что антиоксиданты работают хорошо только тогда, когда они работают в группе, поддерживая друг друга. Например: Витамин Е- главный прерыватель реакций окисления липидов, расходуется и видоизменяется в этих реакциях. Если рядом с ним находится витамин C, то он его восстанавливает и вводит в строй. Витамин C оберегает также селен от окисления.

Когда же организм подвергается действию экстремальных факторов (радиация, яды), происходит образование слишком большого количества повреждающих молекул, и в таком случае организму требуется большее количество антиоксидантов. Доказано, что именно образование большого количества свободных радикалов является начальной стадией многих заболеваний от простого кашля до рака. Основными антиоксидантами, поступающими с пищей, являются: витамины C и E, селен и каротины. Помимо природных антиоксидантов есть синтетические аналоги, но, следует отметить, что в целом, синтетические антиоксиданты характеризуются более частыми нежелательными эффектами по сравнению с эндогенными соединениями.


.Природные антиоксианты, их действие и нормы потребления


Ниже рассмотрены природные антиоксиданты, которые относятся к более распространенным и известным. Также предоставлены сведения об их действии, содержании в продуктах питания и нормы их потребления. Довольно давно ведутся споры по вопросу о нормировании этих веществ, а точнее об их среднесуточной и максимально допустимой дозе. Сторонники введения малого количества антиоксидантов делают упор на то, что повышенные дозы приведут к развитию патологических процессов, не связанных с действием свободных радикалов, а их оппоненты говорят о практически полной утрате защиты против повреждающих молекул при введении малых доз антиоксидантов. Тем не менее, существуют установленные нормативы, учитывающие мнения обеих сторон. В работе указываются последние данные, полученные в результате многочисленных исследований, проведенных в Институте медицины Национальной Академии Наук (США). Хотя Институт медицины и не является правительственной организацией, официальные структуры используют его данные в официальных документах. Именно этой информацией руководствуются все производители продуктов в США, указывая на упаковках сведения о составе своих изделий и их питательных свойствах.


6.1Витамин C


Витамин C - водорастворимый витамин, химическое название которого аскорбиновая кислота. Способен образовывать окислительно-восстановительную пару аскорбиновая кислота/дегидроаскорбиновая кислота. Весьма важным обстоятельством является то, что аскорбиновая кислота проявляет выраженный антиоксидантный эффект только в отсутствии металлов переменной валентности (ионов железа и меди); в присутствии же активной формы железа (Fe3+) , она может восстанавливать его до двухвалентного железа (Fe2+), которое способно высвобождать гидроксильный радикал по реакции Фентона, проявляя свойства прооксиданта. Аскорбиновая кислота является мощным антиоксидантом, который задерживает процесс старения, препятствует возникновению рака и сердечных нарушений. Она необходима для поддержания здоровых зубов, десен, костей, хрящей, соединительной ткани, кровеносных сосудов и стенок капилляров. Витамин С нужен для образования коллагена - основного структурного материала организма. Он охраняет другие антиоксиданты (такие как витамин E и бета-каротин) от разрушения свободными радикалами. Исследователи отмечают, что при разрушении витамина E свободными радикалами витамин C помогает восстановить его и снова запустить на борьбу со свободными радикалами. Предотвращает образование в желудке канцерогенных веществ из нитратов и нитритов, попадающих туда с водой или с консервированной пищей. Витамин С укрепляет иммунную систему. Иммунные клетки накапливаются в количестве, в сто раз превышающем его содержание в крови. Также этот витамин помогает усвоению железа, особенно из изюма, зеленых овощей и бобов, но не способствует его усвоению из мяса. Витамин C улучшает способность выводить токсичные для организма металлы, такие как медь, свинец, ртуть и др, защищает от сердечных заболеваний, а именно, снижает уровень холестерина, предотвращает высокое кровяное давление, защищает холестерин от окисления, которое как считается, ведет к атеросклерозу.

Рекомендуемая доза витамина C, была повышена для полного насыщения организма. Теперь женщинам ежедневно полагается 75 миллиграмм витамина C, мужчинам - 90 миллиграмм. Из-за того, что курильщики наиболее подвержены повреждающему действию свободных радикалов, и расход витамина C идет у них быстрее, им требуется дополнительно 35 миллиграмм. Прежняя средняя суточная доза для взрослых составляла 60 миллиграмм.

Авторы исследования утверждают, что эти уровни витамина C могут быть легко получены и без употребления в пищу каких-либо добавок, достаточно иметь в своем рационе цитрусовые, картофель, клубнику, зелень и т.д. Например, двухсотграммовый стакан апельсинового сока дает организму 100 миллиграмм витамина C. Также была пересмотрена максимально допустимая доза потребления витамина C: в настоящее время она составляет 2000 миллиграмм в день для взрослого человека.


6.2Витамин E


Витамин E - жирорастворимый витамин, химическое название которого токоферол. Является естественным природным антиоксидантом, замедляющим старение человеческой кожи, а также других продуктов в природе. В составе есть фенольное кольцо с системой сопряженных двойных связей, защищающим различные вещества от окислительных изменений, участвующим в биосинтезе гема и белков, пролиферации клеток, тканевом дыхании и других важнейших процессах клеточного метаболизма. Витамин E может выполнять структурную функцию, взаимодействуя с фосфолипидами биологических мембран. Токоферол тормозит ПОЛ, предупреждая повреждение клеточных мембран, элиминирует свободные радикалы, восстанавливая их. Поток протонов от фонда НАДФН+ и НАДН к токоферолу осуществляется цепью антирадикальных эндогенных соединений (глутатион, эрготионин-аскорбат) при участии соответствующих редуктаз и дегидрогеназ. Механизм антиоксидантного действия препарата заключается в переносе водорода фенильной группы на перекисный радикал:

OO - + a-ТокОH _____ R-OОH + a-ТокО--OO - + a- ТокО- _____ R-OОH + a-Ток (неактивный)


Феноксил - радикал, который образуется при этом, сам по себе достаточно стабилен и в продолжение цепи не участвует.

Синергичный эффект оказывает аскорбиновая кислота, упомянутая выше, восстанавливающая продукт окисления токоферола - a-токофероксид в a-токоферол. Как и другие жирорастворимые витамины, витамин Е хорошо всасывается в верхних отделах тонкой кишки и поступает в кровяное русло через лимфатическую систему. В крови связывается с b-липопротеидами. Около 80% введенного в организм токоферола через неделю экскретируется желчью, а небольшая часть выводится в виде метаболитов с мочой.

Суммарный антиоксидантный эффект a-токоферола не слишком выражен, так как в процессе нейтрализации свободных радикалов данным веществом образуются соединения с остаточной радикальной активностью. Другой недостаток a-токоферола заключается в его липофильности и нерастворимости в воде, что затрудняет создание лекарственных форм a-токоферола для парентерального введения, необходимых при оказании неотложной помощи. Выход здесь состоит в создании липосомальных форм a-токоферола, более эффективных и потенциально пригодных для парентерального введения. Главное достоинство a-токоферола - очень малая токсичность, как у эндогенного соединения.

Эмпирически витамин Е применяют при самых разнообразных заболеваниях, однако большинство сообщений об эффективности токоферола базируется на единичных клинических наблюдениях и экспериментальных данных. Контролируемые исследования практически не проводились. В настоящее время нет четких данных о роли витамина Е в предупреждении опухолевых заболеваний, хотя показана способность препарата снижать образование нитрозаминов (потенциально канцерогенные вещества, образующиеся в желудке), уменьшать образование свободных радикалов и оказывать антитоксическое действие при применении химиотерапевтических средств. Токоферол в дозе 450-600 мг в день оказывает терапевтический эффект у больных с синдромом перемежающейся хромоты, что, возможно, связано с улучшением реологических свойств крови. Терапевтические дозы витамина Е могут защищать генетически дефектные эритроциты при талассемии, недостаточности глютатионсинтетазы и глюкозо-6-фосфатдегидрогеназы. Данные Кембриджского исследования CHAOS по применению антиоксидантов в кардиологии, опубликованные в 1996 году, позволяют говорить, что у больных с достоверным (ангиографически подтвержденным) коронарным атеросклерозом прием витамина Е (суточная доза 544-1088 мг) снижает риск нефатального инфаркта миокарда. Общая же смертность от сердечно-сосудистых заболеваний в этом случае не снижается. Благоприятный эффект проявляется лишь после годичного приема токоферола.

В то же время, в исследовании HOPE (Heart Outcomes Prevention Evaluation), в котором изучалось наряду с рамиприлом действие витамина Е (400 МЕ/сут), установлено, что применение этого антиоксиданта в течение примерно 4,5 лет не оказывало никакого влияния ни на первичную (ИМ, инсульты и смерти от сердечно-сосудистых заболеваний), ни на какие-либо другие конечные точки исследования. В другом крупном исследовании по первичной профилактике атеросклеротических заболеваний у людей по крайней мере с одним фактором риска (гипертония, гиперхолестеринемия, ожирение, преждевременный ИМ у ближайшего родственника или преклонный возраст) витамин Е (300 МЕ/сут) применялся на протяжении 3,6 лет и не оказал никакого действия ни на одну из конечных точек (частота случаев сердечно-сосудистой смерти и всех сердечно-сосудистых событий). Не подтвердилась эффективность витамина Е и в большинстве других случаев (гиперхолестеринемия, тренированность спортсменов, сексуальная потенция, замедление процессов старения и многие другие).

Новый рекомендуемый уровень приема этого витамина составляет 15 миллиграмм и для женщин, и для мужчин. Основные источники витамина Е это орехи, злаки, печень и многие овощи. Данный антиоксидант содержит важный компонент альфа-токоферол, единственное вещество, которое кровь может транспортировать к клеткам, когда нужно. Прежний уровень потребления витамина Е составлял 8 миллиграмм для мужчин и 6,4 - для женщин. Максимально допустимый уровень приема альфа-токоферола составляет 1000 миллиграмм. У людей, превышающих максимально возможную дозу, могут развиться неконтролируемые кровотечения, так как действует в качестве противосвертывающего средства.


.3Селен


Селен - антиоксидант, оберегающий клетки от воздействия свободных радикалов и вступающий в реакцию с такими тяжёлыми металлами как кадмий и ртуть. В качестве антиоксиданта селен защищает нас от сердечных заболеваний, усиливает иммунитет, увеличивает продолжительность жизни. Действуя совместно с другими антиоксидантами - витаминами Е и C, он помогает улучшить мыслительные способности, снижает депрессию, прогоняет усталость. Доказано, что его недостаток в диете экспериментальных животных приводит к возникновению сердечной патологии и ряда других расстройств. Эпидемиологические исследования подтвердили, что в районах с низким содержанием селена, наблюдается повышенная смертность от целого ряда заболеваний, включая сердечно-сосудистые. Однако в последние годы чаще всего выявляется недостаток именно этого микроэлемента в организме человека. Селен входит в состав многих ферментов и гормонов, обеспечивающих жизненно важные функции организма. Он также поддерживает активность клеточного иммунитета, влияет на репродуктивные функции. В сочетании с бета-каротином селен способствует обмену жиров, предотвращает гипертонию, снижает опасность сердечных приступов. Селен участвует в синтезе кофермента Q-10, имеющего важное значение для здоровья сердца и восстановления сердечной мышцы после инфаркта, укрепляет функцию митохондрий сердца, защищая от кислородной недостаточности. Селен предотвращает разрушение печени, соединяясь с тяжелыми металлами и выводя их из организма. Этот антиоксидант предотвращает возникновение целого ряда раковых заболеваний (легких, кишечника, молочной железы). Селен защищает клетки от воздействия радиации, вызывающие воспалительные процессы вследствие облучения. Показано, что в комплексе, с рядом природных биологически активных веществ, значительно улучшается усвояемость селена, расширяются рамки его активного действия.

Нормы потребления селена были понижены до 55 микрограмм в день. Предыдущие показатели составляли 70 микрограмм для мужчин и 55 микрограмм для женщин. Основные продукты, в которых содержится селен - морские водоросли и рыба, печень, злаки и семена подсолнечника, и другие "украшения рациона здорового человека". Новая максимально допустимая доза для селена - 400 микрограмм. Ее превышение сопровождается развитием селеноза - токсической реакции, характеризующейся выпадением волос и ломкостью ногтей.


.4Бета-каротин и другие каротины


Бета-каротин и другие каротины выступают в организме как антиоксиданты, защищающие клеточные структуры от разрушения свободными радикалами. Они поддерживают системы циркуляции в здоровом состоянии. Возможно, предотвращают окисление холестерина и превращение его в склеротические бляшки, которые блокируют кровеносные сосуды и вызывают атеросклероз. Исследования показали, что люди с высоким содержанием бета-каротина в крови реже болеют сердечно-сосудистыми заболеваниями. Каротины препятствуют разрушению свободными радикалами ДНК и других клеточных структур, защищая организм от рака груди, кожи, шейки матки, легких, толстой кишки, мочевого пузыря. Каротины также борятся с нарушениями светочувствительности: у больных с повышенной чувствительностью к яркому свету (выражается в сыпи и крапивнице) наблюдалось улучшение в 80% случаев при лечении бета-каротином. Эти антиоксиданты поддерживают иммунитет, помогая иммунным клеткам разрушать свободные радикалы.

Рекомендованные нормы потребления для этого вещества не существуют.

Каротины содержаться в моркови, зеленые овощах, таких, как капуста, брокколи и шпинат, а бета-каротина особенно много в зимних тыквах.


.5Убихинон


Еще один эндогенный антиоксидант с антирадикальным действием. Убихинон - кофермент, широко распространенный в клетках организма. Он является переносчиком ионов водорода, компонентом дыхательной цепи. В митохондриях, кроме того, убихинон кроме специфической окислительно-восстановительной функции способен выполнять роль антиоксиданта. В химическом отношении это производное бензохинона. Убинон в основном используется в комплексной терапии больных ишемической болезнью сердца, при инфаркте миокарда. При применении препарата улучшается клиническое течение заболевания, снижается частота приступов; увеличивается толерантность к физической нагрузке и возрастает пороговоя мощность; повышается в крови содержание простациклина и снижается тромбоксана. Однако необходимо учитывать, что сам препарат не приводит к увеличению коронарного кровотока и не способствует уменьшению кислородного запроса миокарда. В целом, в качестве антиоксиданта убихинон пока менее изучен, чем a-токоферол. Его главное достоинство, как и у всех эндогенных соединений - относительно небольшая токсичность.


7. Влияние антиоксидантов на процесс старения


Поскольку регулярный приём свежей растительной пищи уменьшает вероятность возникновения сердечно-сосудистых и ряда неврологических заболеваний, была сформулирована и широко растиражирована средствами массовой информации рабочая гипотеза о том, что антиоксиданты могут предотвратить разрушающее действие свободных радикалов на клетки живых организмов, и тем самым замедлить процесс их старения.

Возможно, именно в антиоксидантах заключается секрет долголетия. «Повышение содержания антиоксидантов в организме человека может иметь решающее значение для увеличения продолжительности жизни», - считают американские ученые. По их данным, мыши, у которых была вызвана повышенная выработка антиоксидантных ферментов, жили на 20% дольше и меньше болели заболеваниями сердца и возрастными болезнями. Если подобное справедливо и для человека, то люди могли бы жить дольше 100 лет. Исследования ученых университета Вашингтона в США подтверждают гипотезу о том, что высокоактивные молекулы с ненасыщенными валентностями, иначе называемые свободными радикалами, вызывают старение. С ними связано возникновение сердечных заболеваний, рака и других возрастных болезней. Питер Рабинович и его коллеги разводили мышей, у которых была вызвана повышенная выработка фермента каталаза. Он действует как антиоксидант и выводит опасный элемент - перекись водорода, который является продуктом метаболизма и источником свободных радикалов. «Действие свободных радикалов приводит к сбоям химических процессов внутри клеток и, как следствие, выработке дополнительных свободных радикалов. Создается порочный круг. Результаты исследований убедительно свидетельствуют в пользу теории влияния свободных радикалов на старение» - отмечает Рабинович.

К настоящему времени в разных странах выполнено большое количество эпидемиологических исследований, которые убедительно доказали существование тесной взаимосвязи между наличием главных болезней, сцепленных со старением (атеросклероз, рак, иммунодефицит) и уровнем антиоксидантов (витамины Е и С, провитамин А) или содержанием антиоксидантного элемента селена в плазме крови обследованных пациентов. В частности было показано, что существует достоверная отрицательная корреляция между клиническими проявлениями атеросклероза и низким содержанием антиоксидантов в плазме крови больных. Обратная корреляция была обнаружена также между уровнем потребления антиоксидантов с пищей и риском выявления патологии сердечно-сосудистой системы. Важно отметить, что низкое потребление селена - элемента, входящего в активный центр антиоксидантного фермента глутатионпероксидазы, увеличивает риск возникновения ишемической болезни сердца, в то время как повышенное потребление селена снижает риск развития атеросклероза. В эритроцитах больных атеросклерозом активность глутатионпероксидазы значительно снижена по сравнению с пациентами без признаков ишемии и гиперхолестеринемии.

Приведенные результаты убедительно доказывают, что главные болезни старения формируются и прогрессируют с большей скоростью на фоне снижения уровня природных низко- и высокомолекулярных антиоксидантов в тканях, т.е. при старении отчетливо проявляется «синдром дефицита антиоксидантов». При этом не исключено, что сниженное содержание природных антиоксидантов в крови является еще одним неучтенным фактором риска развития главных болезней старения.

С точки зрения практического подхода к разработке программ профилактики старения необходимо учитывать роль свободнорадикального окисления при:

повреждении липидов клеточных мембран, старении клеток, тканей, органов и организма в целом;

генотоксических процессах, ведущих к кумуляции соматических мутаций и повышающих риск возникновения опухолей и раннего старения;

патогенетической роли в модификации липопротеинов крови, индукции дегенеративных изменений при атеросклерозе, повышении риска аутоиммунных и воспалительных заболеваний;

модификации эндогенных белков, нуклеиновых кислот и целых клеток.

Свободнорадикальное окисление, иммунный ответ, пролиферация, старение, апоптоз, синтез и метаболизм белков тесно взаимосвязаны. В настоящее время доказана эссенциальная роль эндогенных и экзогенных антиоксидантов в предотвращении канцерогенеза и продлении активного долголетия. Поэтому использование антиоксидантов является составной частью патогенетической терапии и профилактики старения. В рамках основных направлений коррекции старения воздействие на состояние антиоксидантного статуса - это воздействия, направлены на замедление клеточного старения.


8. Список используемой литературы


1.Клиническая фармакология: избранные лекции / С.В.Оковитый, В.В.Гайворонская, А.Н.Куликов, С.Н.Шуленин. - М.: ГЭОТАР-Медиа, 2009. - 608 с.: илл.

2.Фармакология: учеб. для студентов учреждений сред. проф. образования, обучающихся по специальностям 060108.51 и 060108.52 "Фармация" по дисциплине "Фармакология" / Р.Н.Аляутдин, Н.Г.Преферанский, Н.Г.Преферанская ; под ред. Р. Н. Аляутдина. - М.: ГЭОТАР-Медиа, 2010. - 704 с.: ил.

3.Биологический возраст и старение: возможности определения и пути коррекции: Руководство для врачей. - М. : ГЭОТАР-Медиа, 2008. - 976 с. : ил.

.Наука и жизнь. №2, 2006

.Биология. Справочник абитуриента. Москва 1997


Теги: Антиоксиданты, их роль в биологии и медицине  Реферат  Химия
Просмотров: 13379
Найти в Wikkipedia статьи с фразой: Антиоксиданты, их роль в биологии и медицине
Назад