Токсичность кадмия и методы воздействия его на окружающую среду

Содержание


Введение

.Общая характеристика кадмия

. Основные источники поступления кадмия в природные среды и живые организмы

. Гигиенические параметры использования кадмия

.Токсикологическая характеристика кадмия

.Подходы к отбору проб

.Аналитические методы определения кадмия в образцах

.Выбор вида индикатора. Популяционные характеристики, используемые для оценки состояния популяции под действием кадмия

.Токсикологические методы оценки воздействия присутствующей дозы кадмия на компоненты биоты

Выводы и предложения (рекомендации)

Библиографический список

кадмий природная токсичность


Введение


В настоящее время очень важную роль имеют проблемы экологии. Поэтому сейчас актуален вопрос правильной оценки последствий и расчета выбросов вредных веществ в окружающую среду.

Атмосферный воздух является самой важной жизнеобеспечивающей природной средой и представляет собой смесь газов и аэрозолей приземного слоя атмосферы, сложившуюся в ходе эволюции Земли, деятельности человека и находящуюся за пределами жилых, производственных и иных помещений. Результаты экологических исследований, как в России, так и за рубежом, однозначно свидетельствуют о том, что загрязнение приземной атмосферы - самый мощный, постоянно действующий фактор воздействия на человека, пищевую цепь и окружающую среду. Атмосферный воздух имеет неограниченную емкость и играет роль наиболее подвижного, химически агрессивного и всепроникающего агента взаимодействия вблизи поверхности компонентов биосферы, гидросферы и литосферы.

В последние годы получены данные о существенной роли для сохранения биосферы озонового слоя атмосферы, поглощающего губительное для живых организмов ультрафиолетовое излучение Солнца и формирующего на высотах около 40 км тепловой барьер, предохраняющий охлаждение земной поверхности.

Атмосфера оказывает интенсивное воздействие не только на человека и биоту, но и на гидросферу, почвенно-растительный покров, геологическую среду, здания, сооружения и другие техногенные объекты. Поэтому охрана атмосферного воздуха и озонового слоя является наиболее приоритетной проблемой экологии и ей уделяется пристальное внимание во всех развитых странах.

Загрязненная приземная атмосфера вызывает рак легких, горла и кожи, расстройство центральной нервной системы, аллергические и респираторные заболевания, дефекты у новорожденных и многие другие болезни, список которых определяется присутствующими в воздухе загрязняющими веществами и их совместным воздействием на организм человека. Результаты специальных исследований, выполненных в России и за рубежом, показали, что между здоровьем населения и качеством атмосферного воздуха наблюдается тесная положительная связь.

Основные агенты воздействия атмосферы на гидросферу - атмосферные осадки в виде дождя и снега, в меньшей степени смога, тумана. Поверхностные и подземные воды суши имеют главным образом атмосферное питание и вследствие этого их химический состав зависит в основном от состояния атмосферы.

Отрицательное влияние загрязненной атмосферы на почвенно-растительный покров связано как с выпадением кислотных атмосферных осадков, вымывающих кальций, гумус и микроэлементы из почв, так и с нарушением процессов фотосинтеза, приводящих к замедлению роста и гибели растений. Высокая чувствительность деревьев (особенно березы, дуба) к загрязнению воздуха выявлена давно. Совместное действие обоих факторов приводит к заметному уменьшению плодородия почв и исчезновению лесов. Кислотные атмосферные осадки рассматриваются сейчас как мощный фактор не только выветривания горных пород и ухудшения качества несущих грунтов, но и химического разрушения техногенных объектов, включая памятники культуры и наземные линии связи. Во многих экономически развитых странах в настоящее время реализуются программы по решению проблемы кислотных атмосферных осадков. В рамках Национальной программы по оценке влияния кислотных атмосферных осадков, учрежденной в 1980 году многие федеральные ведомства США начали финансировать исследования атмосферных процессов, вызывающих кислотные дожди, с целью оценки влияния последних на экосистемы и выработки соответствующих природоохранных мер. Выяснилось, что кислотные дожди оказывают многоплановое воздействие на окружающую среду и являются результатом самоочищения (промывания) атмосферы. Основные кислотные агенты - разбавленные серная и азотная кислоты, образующиеся при реакциях окисления оксидов серы и азота с участием пероксида водорода.

Источники загрязнения атмосферы

К природным источникам загрязнения относятся: извержения вулканов, пыльные бури, лесные пожары, пыль космического происхождения, частицы морской соли, продукты растительного, животного и микробиологического происхождения. Уровень такого загрязнения рассматривается в качестве фонового, который мало изменяется со временем.

Антропогенные источники загрязнения обусловлены хозяйственной деятельностью человека. К ним следует отнести:

. Сжигание горючих ископаемых, которое сопровождается выбросом 5 млрд. т.углекислого газа в год.

. Работа тепловых электростанций, когда при сжигании высокосернистых углей в результате выделения сернистого газа и мазута образуются кислотные дожди.

. Выхлопы современных турбореактивных самолетов с оксидами азота и газообразными фторуглеводородами из аэрозолей, которые могут привести к повреждению озонового слоя атмосферы (озоносферы).

. Производственная деятельность.

. Загрязнение взвешенными частицами (при измельчении, фасовке и загрузке, от котельных, электростанций, шахтных стволов, карьеров при сжигании мусора).

. Выбросы предприятиями различных газов.

. Сжигание топлива в факельных печах, в результате чего образуется самый массовый загрязнитель - монооксид углерода.

. Сжигание топлива в котлах и двигателях транспортных средств, сопровождающееся образованием оксидов азота, которые вызывают смог.

. Вентиляционные выбросы (шахтные стволы).

. Вентиляционные выбросы с чрезмерной концентрацией озона из помещений с установками высоких энергий (ускорители, ультрафиолетовые источники и атомные реакторы) при ПДК в рабочих помещениях 0,1 мг/м3. В больших количествах озон является высокотоксичным газом.

При процессах сгорания топлива наиболее интенсивное загрязнение приземного слоя атмосферы происходит в мегаполисах и крупных городах, промышленных центрах ввиду широкого распространения в них автотранспортных средств, ТЭЦ, котельных и других энергетических установок, работающих на угле, мазуте, дизельном топливе, природном газе и бензине. Вклад автотранспорта в общее загрязнение атмосферного воздуха достигает здесь 40-50 %. Мощным и чрезвычайно опасным фактором загрязнения атмосферы являются катастрофы на АЭС (Чернобыльская авария) и испытания ядерного оружия в атмосфере. Это связано как с быстрым разносом радионуклидов на большие расстояния, так и с долговременным характером загрязнения территории.

Высокая опасность химических и биохимических производств заключается в потенциальной возможности аварийных выбросов в атмосферу чрезвычайно токсичных веществ, а также микробов и вирусов, которые могут вызвать эпидемии среди населения и животных.

В настоящее время в приземной атмосфере находятся многие десятки тысяч загрязняющих веществ антропогенного происхождения. Ввиду продолжающегося роста промышленного и сельскохозяйственного производства появляются новые химические соединения, в том числе сильно токсичные. Главными антропогенными загрязнителями атмосферного воздуха кроме крупнотоннажных оксидов серы, азота, углерода, пыли и сажи являются сложные органические, хлорорганические и нитросоединения, техногенные радионуклиды, вирусы и микробы. Наиболее опасны широко распространенные в воздушном бассейне России диоксин, бенз(а)пирен, фенолы, формальдегид, сероуглерод. Твердые взвешенные частицы представлены главным образом сажей, кальцитом, кварцем, гидрослюдой, каолинитом, полевым шпатом, реже сульфатами, хлоридами. В снеговой пылиспециально разработанными методами обнаружены окислы, сульфаты и сульфиты, сульфиды тяжелых металлов, а также сплавы и металлы в самородном виде.

В Западной Европе приоритет отдается 28 особо опасным химическим элементам, соединениям и их группам. В группу органических веществ входят акрил, нитрил, бензол, формальдегид, стирол, толуол, винилхлорид, а неорганических - тяжелые металлы (As, Cd, Cr, Pb, Mn, Hg, Ni, V), газы (угарный газ, сероводород, оксиды азота и серы, радон, озон), асбест. Преимущественно токсическое действие оказывают свинец, кадмий. Интенсивный неприятный запах имеют сероуглерод, сероводород, стирол, тетрахлорэтан, толуол. Ореол воздействия оксидов серы и азота распространяется на большие расстояния. Вышеуказанные 28 загрязнителей воздуха входят в международный реестр потенциально токсичных химических веществ.

Основные загрязнители воздуха жилых помещений - пыль и табачный дым, угарный и углекислый газы, двуокись азота, радон и тяжелые металлы, инсектициды, дезодоранты, синтетические моющие вещества, аэрозоли лекарств, микробы и бактерии. Японские исследователи показали, что бронхиальная астма может быть связана с наличием в воздухе жилищ домашних клещей.

Для атмосферы характерна чрезвычайно высокая динамичность, обусловленная как быстрым перемещением воздушных масс в латеральном и вертикальном направлениях, так и высокими скоростями, разнообразием протекающих в ней физико-химических реакций. Атмосфера рассматривается сейчас как огромный «химический котел», который находится под воздействием многочисленных и изменчивых антропогенных и природных факторов. Газы и аэрозоли, выбрасываемые в атмосферу, характеризуются высокой реакционной способностью. Пыль и сажа, возникающие при сгорании топлива, лесных пожарах, сорбируют тяжелые металлы и радионуклиды и при осаждении на поверхность могут загрязнить обширные территории, проникнуть в организм человека через органы дыхания.

Выявлена тенденция совместного накопления в твердых взвешенных частицах приземной атмосферы Европейской России свинца и олова; хрома, кобальта и никеля; стронция, фосфора, скандия, редких земель и кальция; бериллия, олова, ниобия, вольфрама и молибдена; лития, бериллия и галлия; бария, цинка, марганца и меди. Высокие концентрации в снеговой пыли тяжелых металлов обусловлены как присутствием их минеральных фаз, образовавшихся при сжигании угля, мазута и других видов топлива, так и сорбцией сажей, глинистыми частицами газообразных соединений типа галогенидов олова.


1.Общая характеристика кадмия


Ка?дмий - элемент <#"justify">2.Основные источники поступления кадмия в природные среды и живые организмы


Кадмий типично редкий и довольно рассеянный элемент, среднее содержание данного металла в земной коре (кларк) оценивается примерно 1,310-5 % либо 1,610-5 % по массе, получается, что в литосфере кадмия приблизительно 130 мг/т. Кадмия настолько мало в недрах нашей планеты, что даже считающегося редким германия в 25 раз больше! Приблизительно такие же соотношения у кадмия и с другими редкими металлами: бериллием, цезием, скандием и индием. Кадмий близок по распространенности к сурьме (210-5 %) и в два раза более распространен, чем ртуть (810-6 %).

Для сорок восьмого элемента характерна миграция в горячих подземных водах вместе с цинком (кадмий содержится в виде изоморфной примеси во многих минералах и всегда в минералах цинка) и другими халькофильными элементами, то есть химическими элементами, склонными к образованию природных сульфидов, селенидов, теллуридов, сульфосолей и иногда встречающихся в самородном состоянии. Кроме того, сорок восьмой элемент концентрируется в гидротермальных отложениях. Довольно богаты кадмием вулканические породы, содержащие до 0,2 мг кадмия на кг; среди осадочных пород наиболее богаты сорок восьмым элементом глины - до 0,3 мг/кг (для сравнения известняки содержат кадмия 0,035 мг/кг, песчанники - 0,03 мг/кг). Среднее содержание кадмия в почве - 0,06 мг/кг. Также, этот редкий металл присутствует в воде - в растворенном виде (сульфат, хлорид, нитрат кадмия) и во взвешенном виде в составе органо-минеральных комплексов. В природных условиях сорок восьмой элемент попадает в подземные воды в результате выщелачивания руд цветных металлов, а также в результате разложения водных растений и организмов, способных его накапливать. С начала XX века преобладающим фактором поступления кадмия в воды и почву стало антропогенное загрязнение кадмием природных вод. На содержание кадмия в воде существенное влияние оказывает pH среды (в щелочной среде кадмий выпадает в осадок в виде гидроксида), а также сорбционные процессы. По той же антропогенной причине кадмий присутствует и в воздухе. В сельской местности содержание кадмия в воздухе составляет 0,1-5,0 нг/м3 (1 нг или 1 нанограмм = 10-9 грамм), в городах - 2-15 нг/м3, в промышленных районах - от 15 до 150 нг/м3. Главным образом попадание кадмия в атмосферный воздух связано с тем, что многие угли, сжигаемые на теплоэлектростанциях, содержат этот элемент. Осаждаясь из воздуха, кадмий попадает в воду и почву. Увеличению содержания кадмия в почве способствует использование минеральных удобрений, ведь практически все они содержат незначительные примеси этого металла. Из воды и почвы кадмий попадает в растения и живые организмы и далее по пищевой цепочке может «поставляться» человеку.

Кадмий имеет собственные минералы: хоулиит, отавит CdCO3, монтемпонит CdO (содержит 87,5 % Cd), гринокит CdS (77,8 % Cd), ксантохроит CdS(H2O)х (77,2 % Cd) кадмоселит CdSe (47 % Cd). Однако своих месторождений они не образуют, а присутствуют в виде примесей в цинковых, медных, свинцовых и полиметаллических рудах (более 50), которые и являются основным источником промышленной добычи сорок восьмого элемента. Причем главную роль играют руды цинка, где концентрация кадмия колеблется от 0,01 до 5 % (в сфалерите ZnS). В большинстве же случаев содержание кадмия в сфалерите не превышает 0,4 - 0,6 %. Кадмий накапливается также в галените (0,005 - 0,02 %), станните (0,003 - 0,2 %), пирите (до 0,02 %), халькопирите (0,006 - 0,12 %), однако из этих сульфидов кадмий обычно не извлекается.

Кадмий способен накапливаться в растениях и живых организмах, по этой причине кадмий можно обнаружить в морских осадочных породах - сланцах (Мансфельд, Германия). Общие мировые ресурсы кадмия оцениваются в 20 млн тонн, промышленные - в 600 тыс. тонн.

Применение

Главным потребителем сорок восьмого элемента является производство химических источников тока: никель-кадмиевые и серебряно-кадмиевые аккумуляторы, свинцово-кадмиевые и ртутно-кадмиевые элементы в резервных батареях, нормальные элементы Вестона. Применяемые в промышленности кадмийникелеве аккумуляторы (АКН) - одни из самых востребованных среди прочих химических источников тока. Отрицательные пластины подобных аккумуляторов выполнены из железных сеток с губчатым кадмием в качестве активного агента, а положительные пластины покрыты окисью никеля. В качестве электролита выступает раствор едкого кали (гидроксид калия). Никель-кадмиевые щелочные аккумуляторы более надежны, чем кислотные свинцовые. Химические источники тока, использующие кадмий отличаются продолжительным сроком эксплуатации, стабильностью работы и высокими электрическими характеристиками. Помимо всего прочего, подзарядка данных аккумуляторов занимает менее одного часа! Однако АКН нельзя подзаряжать без полной предварительной разрядки, и в этом они, конечно же, уступают металлогидридным аккумуляторам.

Другая широкая область применения кадмия - нанесение защитных антикоррозионных покрытий на металлы (кадмирование). Кадмиевое покрытие надежно предохраняет железные и стальные изделия от атмосферной коррозии. В прошлом кадмирование производили путем погружения металла в расплавленный кадмий, современный процесс осуществляют исключительно электролитическим путем. Кадмированию подвергают наиболее ответственные детали самолетов, кораблей, а также детали и механизмы, предназначенные для работы в условиях тропического климата. Известно, что некоторые свойства цинка и кадмия схожи, однако у кадмиевого покрытия есть определенные преимущества перед оцинкованным: во-первых, оно более устойчиво к коррозии, во-вторых, его легче сделать ровным и гладким. Кроме того, в отличие от цинка, кадмий устойчив в щелочной среде. Кадмированная жесть используется довольно широко, однако существует область, в которой применение покрытия из сорок восьмого элемента строго запрещено - это пищевая промышленность. Связано это с высокой токсичностью кадмия. До определенного момента распространение кадмиевых покрытий было ограничено и по другой причине - при электролитическом нанесении кадмия на стальную деталь в металл может проникнуть содержащийся в электролите водород, а, как известно, этот элемент вызывает у высокопрочных сталей водородную хрупкость, приводящую к неожиданному разрушению металла под нагрузкой. Проблему удалось решить советским ученым из Института физической химии Академии наук СССР. Оказалось, что ничтожная добавка титана (один атом титана на тысячу атомов кадмия) предохраняет кадмированную стальную деталь от возникновения водородной хрупкости, поскольку титан в процессе нанесения покрытия поглощает из стали весь водород.

Порядка десятой части мирового производства кадмия расходуется на производство сплавов. Небольшая температура плавления - одна из причин широкого применения кадмия в легкоплавких сплавах. Таковым, например, является сплав Вуда, содержащий 12,5 % сорок восьмого элемента. Подобные сплавы используют как припои, как материал для получения тонких и сложных отливок, в автоматических противопожарных системах, для спайки стекла с металлом. Припои, содержащие сорок восьмой элемент, довольно устойчивы к температурным колебаниям. Другая отличительная черта кадмиевых сплавов - их высокие антифрикционные свойства. Так, сплав, содержащий 99 % кадмия и 1 % никеля, применяют для изготовления подшипников, работающих в автомобильных, авиационных и судовых двигателях. Поскольку кадмий недостаточно стоек к действию кислот, в том числе и содержащихся в смазочных материалах органических кислот, подшипниковые сплавы на основе кадмия покрывают индием. Легирование меди малыми добавками кадмия (менее 1 %) позволяет делать более износостойкие провода на линиях электрического транспорта. Столь ничтожные добавки кадмия способны значительно повысить прочность и твердость меди, практически не ухудшая ее электрических свойств. Амальгаму кадмия (раствор кадмия в ртути) используют в зубоврачебной технике для изготовления зубных пломб.

В сороковые годы XX века у кадмия появилось новое амплуа - из него стали делать регулирующие и аварийные стержни атомных реакторов. Причина, по которой сорок восьмой элемент в кратчайший срок стал стратегическим материалом, заключалась в том, что он очень хорошо поглощает тепловые нейтроны. А ведь первые реакторы начала «атомного века» работали исключительно на тепловых нейтронах. Лишь позже выяснилось, что реакторы на быстрых нейтронах более перспективны и для энергетики, и для получения ядерного горючего - 239Pu, а против быстрых нейтронов кадмий бессилен, он их не задерживает. Однако еще во времена реакторов на тепловых нейтронах кадмий утратил главенствующую роль, уступив ее бору и его соединениям.

Порядка 20 % кадмия (в виде соединений) используется для производства неорганических красящих веществ. Сульфид кадмия CdS - важный минеральный краситель, ранее называвшийся кадмиевой желтью. Уже в начале XX века было известно, что можно получить кадмиевую желть шести оттенков, начиная от лимонно-желтого до оранжевого. Получаемые при этом краски устойчивы к слабым щелочам и кислотам, а к сероводороду совершенно не чувствительны. Краски на основе CdS использовались во многих областях - живописи, печати, росписи фарфора, ими покрывали пассажирские вагоны, защищая их от паровозного дыма. Красители, содержащие сульфид кадмия, использовали в текстильном и мыловаренном производствах. Однако в настоящее время довольно дорогой сульфид кадмия часто заменяют более дешевыми красителями - кадмопоном (смесь сульфида кадмия и сульфата бария) и цинко-кадмиевым литопоном (состав, как и у кадмопона, плюс сульфид цинка). Другое соединение сорок восьмого элемента - селенид кадмия CdSe - применяют как красную краску. Однако не только в производстве красящих веществ нашли свое применение соединения сорок восьмого элемента - сульфид кадмия, например, также применяется для производства плёночных солнечных батарей, коэффициент полезного действия которых составляет порядка 10-16 %. Кроме того, CdS - довольно хороший термоэлектрический материал, который используется как компонент полупроводниковых материалов и люминофоров. Иногда кадмий используют в криогенной технике, что связано с его максимальной теплопроводностью (относительно прочих металлов) вблизи абсолютного нуля.

Кадмий в производстве

Главные «поставщики» сорок восьмого элемента - это побочные продукты переработки цинковых, медно-цинковых и свинцово цинковых руд. Что же касается собственных минералов кадмия, то единственным, представляющим интерес в получении сорок восьмого элемента, является гринокит CdS, так называемая «кадмиевая обманка». Добывается гринокит совместно с фаеритом при разработке цинковых руд. В процессе переработки кадмий накапливается в побочных продуктах процесса, откуда его потом извлекают. При переработке полиметаллических руд, как говорилось ранее, кадмий является побочным продуктом цинкового производства. Это либо медно-кадмиевые кеки (осадки металлов, полученные вследствие очистки растворов сульфата цинка ZnSO4 действием цинковой пыли), которые содержат от 2 до 12 % Cd, либо пуссьеры (летучие фракции, образующиеся при дистилляционном получении цинка), содержащие от 0,7 до 1,1 % кадмия. Наиболее богаты сорок восьмым элементом концентраты, полученные при ректификационной очистке цинка, они могут содержать до 40 % кадмия. Из медно-кадмиевых кеков и других продуктов с высоким содержанием сорок восьмого элемента его обычно выщелачивают серной кислотой H2SO4 при одновременной аэрации воздухом. Процесс ведут в присутствии окислителя - марганцевой руды или оборотного марганцевого шлама из электролизных ванн.

Кроме того, кадмий извлекается из пыли свинцовых и медеплавильных заводов (она может содержать от 0,5 до 5% и от 0,2 до 0,5 % кадмия, соответственно). В таких случаях пыль обычно обрабатывают концентрированной серной кислотой H2SO4, а затем получившийся сульфат кадмия выщелачивают водой. Из полученного раствора сульфата кадмия действием цинковой пыли осаждают кадмиевую губку, после чего ее растворяют в серной кислоте и очищают раствор от примесей действием карбоната натрия Na2CO3 или оксида цинка ZnO, возможно также использование методов ионного обмена. Металлический кадмий выделяют электролизом на алюминиевых катодах или же восстановлением цинком (вытеснением цинком оксида кадмия CdO из растворов CdSO4) с применением центробежных реакторов-сепараторов. Рафинирование металлического кадмия обычно заключается в переплавке металла под слоем щелочи (для удаления цинка и свинца), при этом возможно использование Na2CO3; обработке расплава алюминием (для удаления никеля) и хлоридом аммония NH4Cl (для удаления таллия). Кадмий более высокой чистоты получают электролитическим рафинированием с промежуточной очисткой электролита, которая проводится с применением ионного обмена или экстракцией; ректификацией металла (обычно при пониженном давлении), зонной плавкой или другими кристаллизационными методами. Сочетая выше приведенные способы очистки, возможно получение металлического кадмия с содержанием основных примесей (цинк, медь и прочие) всего 10-5 % по массе. Кроме того, для очистки сорок восьмого элемента могут быть использованы методы электропереноса в жидком кадмии, электрорафинирования в расплаве гидроксида натрия NaOH, амальгамного электролиза. При сочетании зонной плавки с электропереносом наряду с очисткой может происходить и разделение изотопов кадмия.

Мировой объем производства кадмия в значительной степени связан с масштабами производства цинка и за последние десятилетия значительно возрос - по данным 2006 года в мире производилось порядка 21 тысячи тонн кадмия, в то время как в 1980 году эта цифра составляла всего 15 тысяч тонн. Рост потребления сорок восьмого элемента продолжается и сейчас. Основными производителями данного металла считаются страны Азии: Китай, Япония, Корея, Казахстан. На их долю приходится 12 тысяч тонн от общего производства. Крупными производителями кадмия также можно считать Россию, Канаду и Мексику. Смещение массового производства кадмия в сторону Азии связано с тем, что в Европе произошло сокращение использования сорок восьмого элемента, а в Азиатском регионе наоборот - растет спрос на никель-кадмиевые элементы, что заставляет многих переводить производство в страны Азии.


.Гигиенические параметры использования кадмия


Современный уровень развития промышленных технологий не позволяет перейти к экологически чистому производству. Одним из наиболее распространенных загрязнителей окружающей среды являются ионы тяжелых металлов, в частности кадмий. Индустриальное загрязнение кадмием характерно для многих промышленных районов России. Кадмий способен адсорбироваться на твердых частицах и переноситься на большие расстояния.

Источниками большинства антропогенных загрязнений являются отходы от металлургических производств, со сточными водами гальванических производств (после кадмирования), других производств, в которых применяются кадмийсодержащие стабилизаторы, пигменты, краски и в результате использования фосфатных удобрений. Кадмий присутствует в воздухе крупных городов вследствие истирания шин, эрозии некоторых видов пластмассовых изделий, красок и клеящих материалов. Однако больше всего в окружающую среду кадмий поступает в виде побочного продукта металлургического производства (например, при выплавке и электролитической очистке цинка), а также при хранении и переработке бытовых и промышленных отходов. Даже в незагрязненных районах с содержанием кадмия в воздухе менее 1 мкг/м, его ежедневное поступление в организм человека при дыхании составляет около 1% от допустимой суточной дозы.

Дополнительным источником поступления кадмия в организм является курение. Одна сигарета содержит 1-2 мкг кадмия, и около 10% его поступает в органы дыхания. У лиц выкуривающих до 30 сигарет в день, за 40 лет в организме накапливается 13-52 мкг кадмия, что превышает его количество, поступающее с пищей.

В питьевую воду кадмий попадает вследствие загрязнения водоисточников производственными сбросами, с реагентами, используемыми на стадии водоподготовки, а также в результате миграции из водопроводных конструкций. Доля кадмия, поступающего в организм с водой, в общей суточной дозе составляет 5-10% . Среднесуточное потребление кадмия человеком составляет примерно 50 мкг с отдельными отклонениями в зависимости от индивидуальных и региональных особенностей.Предельно допустимая концентрация (ПДК) кадмия в атмосферном воздухе составляет 0,3 мкг/м, в воде водоисточников - 0,001мг/л, в почвах песчаных и супесчаных кислых и нейтральных 0,5, 1,0 и 2,0 мг/ кг соответственно.

Всемирной организацией здравоохранения (ВОЗ) установлен допустимый уровень содержания кадмия в организме 6,7- 8 мкг/кг. Обмен кадмия в организме характеризуется следующими основными особенностями: отсутствием эффективного механизма гомеостатического контроля; длительным удержанием (кумуляцией) в организме. На задержку кадмия в организме оказывает влияние возраст человека. У детей и подростков степень его всасывания в 5 раз выше, чем у взрослых. Выведение кадмия происходит медленно. Период его биологической полужизни в организме колеблется, по разным оценкам, в пределах 10-47 лет /10,11/. От 50 до 75% кадмия от попавшего количества удерживается в организме. Основное количество кадмия из организма выводится с мочой (1-2 мкг /сут) и калом(10-50 мкг/сут).


.Токсикологическая характеристика кадмия


Хроническое воздействие кадмия на человека приводит к нарушениям почечной функций легочной недостаточной, остёомаляций, анемий и потери обоняния. Существует данные о возможном канцерогенном эффекте кадмия и о вероятном участии его в развитии сердечно - сосудистых заболеваний. Наиболее тяжелой формой хронического отравления кадмием является болезнь итай - итай характеризующаяся деформацией скелета с заметным уменьшением роста, поясничными болями, болезненным явлениями в мышцах ног, утиной походкой. Кроме того, отмечаются частные переломы размягчённых костей, а также нарушение функций поджелудочной железы, изменения в желудочно-кишечном тракте, гипохромная анемия, дисфункция почек и др.. Кадмий способен накапливаться в организме человека и животных, так как сравнительно легко усваивается из пищи и воды и проникает в различные органы и ткани. Токсическое действие металла проявляется уже при очень низких концентрациях. В современной научной литературе изучению токсического действия кадмия посвящено немало работ. Наиболее типичным проявлением отравления кадмием является нарушение процессов поглощения аминокислот, фосфора и кальция в почках. После прекращения действия кадмия повреждения, вызванные его действием в почках, остаются необратимыми. Показано, что нарушение процессов обмена в почках может привести к изменению минерального состава костей. Известно, что кадмий накапливается преимущественно в корковом слое почек, а его концентрация в мозговом слое и почечных лоханках значительно ниже, что связано с его способностью депонироваться в паренхиматозных органах и медленным выведением из организма.

Предположительно проявление токсического действия ионов кадмия связано синтезом в организме белка металиотеонеина, который связывает и транспортирует его в почки. Там белок почти полностью реадсорбируется и быстро деградирует с освобождением ионов кадмия, стимулирующих металлиотионеина в клетках эпителия проксимальных канальцев. Деградация комплекса кадмий-металлиотионеин приводит к повышению уровня ионов кадмия вначале в лизосомальной фракций, а затем в цитозоле, где происходит связывание с почечным металлиотионеином. При этом в клетках появляются везикулы, и повышается число электронно-плотных лизосом, появлением низкомолекулярной протеинурии и кальцийурией.

Роль белка металиотинеина в снижении токсичности кадмия весьма значительна. Экспериментальное внутривенное введение кадмия, связанного с данным белком, предотвращает развитие некроза в почечной ткани у мышей, тогда как аналогичные дозы неорганического кадмия вызывает развитие некроза в почках. Это доказывает участие металиотионеина в снижении токсичности металла. Однако этот механизм ограничен в количественном отношении, потому что при длительном поступлении кадмия также развивается повреждение тубулярного эпителия.

Многочисленными исследованиями была показана возможная связь между кадмийиндуцированным повреждением клеток почек, межклеточным изменением содержания ионов кадмия и индукцией синтеза стрессовых белков. Первым кандидатом на роль стрессового белка является кальмодулин, так как in vitro показано, что кадмий активирует секрецию этого гормона, который через усиление потока кальция в клетку может повреждать цитоскелет.

Кадмий вызывает развитие протеинурии, глюкозурии, аминоацидурии и другие патологические процессы. При длительном поступлении кадмия в организм развивается почечный тубулярный ацидоз, гиперкальцийурия и формируются камни в мочевом пузыре. В тяжелых случаях хронической кадмиевой интоксикации может также наблюдаться нефрокальцидоз. Накопление кадмия в клетках культуры почек происходит параллельно повышению степени его токсичности. Однако характер распределения его в клетке не зависит от выраженности цитотоксического действия: более 90% металла связано с цитозолем, остальная часть - микросомной, митохондриальной, ядерной фракциями и клеточными фрагментами.

Изучение субклеточного распределения кадмия в печени позволило расшифровать механизм возникновения толерантности к данному металлу. Установлено, что снижение чувствительности к кадмию обусловлено изменением его распределения не в тканях, а цитозольной субклеточной фракции печени, являющиеся органом - мишенью, где происходит связывание его с металиотионеином. В дозе 2,4 мг/кг кадмий снижает синтез белка в микросомальной фракции печени крыс, не нарушая его в ядрах и митохондриях. Накапливаясь на внутренних мембранах митохондрий, данный металл уменьшает энергоснабжение и стимулирует перекисное окисление липидов (ПОЛ) при концентрациях 10 - 100 мкмоль /15,16/.

В первые сутки после введения кадмия в дозе 4 мг/кг в мышце сердца крыс по сравнению с контролем увеличились содержание диеновых коньюгантов в 2,1 раз, активность глутатионпероксидазы - на 3,2%. В коре больших полушарий головного мозга содержание шиффовых оснований возрастало в 2,2 раза. На седьмые сутки наблюдения у животных, получавших кадмий, концентрация шиффовых оснований в неокортексе оставалась повышенной на 59,3%, в сердце - увеличилось в 2,4 раза по сравнению с контролем; содержание коньюгантов в миокарде в дозе 1 мкмоль происходит нарушение целостности мембран митохондрий, но стимуляция ПОЛ не наблюдается.

При хроническом ингаляционном воздействии кадмий вызывает тяжелые поражения легких. Как показали проведенные Шоповой В. Л. с сотрудниками исследования, процент альвеолярных макрофагов (АМ) при воздействии кадмия в первый день значительно понижался (до 11,5%). Этот эффект наблюдался и на пятнадцатый день - АМ составил 45,5% от исходных значений. Одновременно резко повышался процент полиморфонуклеарных лейкоцитов (ПНЛ), среди некоторых встречались и незрелые формы. Средняя площадь АМ после химического воздействия увеличивалась за счет повышения процента очень крупных клеток, а не за счет равномерного увеличения площади всех клеток. При этом крупные АМ имели вакуолизированную пенистую цитоплазму. Встречались и клетки с пикнотическими ядрами, кариолизисом и кариорексисом. Все это указывает на то, что соединения кадмия существенно понижают содержание внутриклеточного АТФ и ингибируют клеточное дыхание.

В основе механизма токсического действия ионов тяжелых металлов, в том числе кадмия, лежит их взаимодействие с компонентами клеток, молекулами клеточных органелл и мембран.

Ионы металлов могут влиять на процессы, протекающие в клетке, только проникая внутрь ее и фиксируясь в субклеточных мембранах. Кадмий проникает в клетку через потенциал зависимые кальциевые канальцы. Воздействие кадмия на внутриклеточные процессы весьма разнообразны. Так, металл оказывает заметное влияние на обмен нуклеиновых кислот и белка. Он ингибирует in vivo включение тимидина в ДНК регенерирующей печени, угнетает синтез белка в печени крыс на стадии инициации трансляции, нарушая образования полирибосом, тогда как процесс элонгации, напротив, ускоряется в результате активирования факторов EF - 1 и EF - 2 /9/. Избыток ионов кадмия ингибирует синтез ДНК, белков и нуклеиновых кислот, влияет на активность ферментов, нарушает усвоение и обмен ряда микроэлементов (Zn, Cu, Se, Fe), что может вызывать их дефицит. Следует заметить, что при достаточном поступлении цинка в организм токсичность кадмия снижается.

С помощью электронной микроскопии было установлено, что кадмий вызывает ультраструктурные изменения клеточных мембран, митохондрий, цистерн аппарата Гольджи, сети трубочек, хроматина, ядрышка, микрофиламентов и рибосом.

Поражение клеточной оболочки является наиболее ранним признаком действия данного металла, особенно при длительном поступлении, хотя клетки могли переносить поражения клеточной оболочки, а также митохондрий и в некоторой степени - аппарата Гольджи.

При исследовании воздействия кадмия in vitro на митохондриальную мембрану выявили, что ионы кадмия повышают проницаемость мембраны к ионам H, K, Mg, а это приводит к активации дыхания энергизованных нефосфорилирующих митохондрий.

Известно, что некоторые ферменты в своей структуре имеют ионы металлов. Существует группа ферментов, в состав простетической части которых входят ионы металлов IV периода таблицы химических элементов, которые способны замещаться на любой двухвалентный ион металла (близкий по положению в таблице Д. И. Менделеева), в частности, к таким ферментам относятся щелочная фосфатаза и ряд протеаз. На основании проведенных экспериментов можно предположить, что в результате замещения ионов в простетической части фермента один на другой происходит изменение пространственной конфигурации активного центра фермента, что приводит к изменению уровня его активности.

Свое токсическое влияние кадмий оказывает и на репродуктивные функции организма. Эффект зависит от дозы вещества и времени воздействия. Основываясь на экспериментальных данных, полагают, что тератогенное действие кадмийсодержащих веществ может быть связано с ингибированием активности карбоангидразы. Так, воздействуя на ткани семенников, кадмий вызывает уменьшение синтеза тестостерона. Данный металл может приводить к гормональным нарушениям у самок, предотвращает оплодотворение, может вызывать кровотечения и даже приводить к смерти эмбрионов. Установлено также, что кадмий способен накапливаться в плаценте и вызывать ее повреждение. В исследованиях было выяснено влияние различных доз кадмия на эмбриональную смертность. Так, при введении металла в дозе 5 мг/кг впервые обнаруживаются мертвые эмбрионы, при 10 мг/кг наблюдается снижение средней массы плода, увеличение эмбриональной смертности в 2,8 раза, а при дозе 20 мг/кг - максимальное число мертвых эмбрионов на одно животное.

В литературе описано также отдаленное воздействие кадмия на развитие потомства. В частности, в результате введения самкам раствора кадмия во время беременности и в период лактации, у потомства, подвергавшегося действию металла в эмбриогенезе, наблюдались нейрохимические изменения в мозжечке и в полосатом теле, и изменения моторной активности во взрослом состоянии.

Таким образом, основываясь на литературных данных, можно отметить, что токсичность соединений кадмия следует рассматривать двояко. С одной стороны - это непосредственное действие ионов на организм. С другой стороны - влияние на потомство особей, подвергшихся действию соединений этого тяжелого металла.


.Подходы к отбору проб


Отбор пробы является первой и достаточно простой, но одновременно и ответственной стадией проведения анализа. К отбору проб предъявляются несколько требований:

. Отбор пробы должен быть асептическим и производиться с помощью стерильного пробоотборника в стерильную емкость, которая должна герметично закрываться для транспортировки образца в лабораторию.

. Образец должен быть репрезентативным, т.е. иметь достаточный объем, величина которого определяется требованиями к содержанию конкретного микроорганизма, и производиться в месте, обеспечивающем адекватность образца всему объему анализируемого объекта.

. Отобранная проба должна быть обработана немедленно, в случае невозможности немедленной обработки - храниться в холодильнике.

Целью отбора проб является получение дискретной пробы, отражающей качество исследуемого объекта.

Отбор проб проводят для:

исследования качества объекта для принятия корректирующих мер при обнаружении изменений кратковременного характера;

исследования качества объекта для установления программы исследований или обнаружения изменений долгосрочного характера;

определения состава и свойств объекта по показателям, регламентированным в нормативных документах (НД);

идентификации источников загрязнения исследуемого объекта.

В зависимости от цели и объекта исследования разрабатывают программу исследований и, при необходимости, проводят статистическую обработку данных по отбору проб. Состав и содержание программы в зависимости от исследуемого объекта - по ГОСТ 17.1.5.05, ГОСТ 17.1.3.08

Место отбора проб и периодичность отбора устанавливают в соответствии с программой исследования в зависимости от водного объекта.

Объем взятой пробы должен соответствовать установленному в НД на метод определения конкретного показателя с учетом количества определяемых показателей и возможности проведения повторного исследования.

Метод отбора проб выбирают в зависимости от типа объекта, глубины пробоотбора, цели исследований и перечня определяемых показателей с таким расчетом, чтобы исключить (свести к минимуму) возможные изменения определяемого показателя в процессе отбора.

Пробы объекта должны быть подвергнуты исследованию в течение сроков, с соблюдением условий хранения. Выбранный метод подготовки отобранных проб к хранению должен быть совместим с методом определения конкретного показателя, установленного в НД. При этом, если в НД на метод определения указаны условия хранения проб, то соблюдают условия хранения проб, регламентированные в НД. О длительности хранения пробы объекта делают отметку в протоколе испытаний. При нарушении условий транспортирования или хранения исследование пробы проводить не рекомендуется.

Все процедуры отбора проб должны быть строго документированы. Записи должны быть четкими, осуществлены надежным способом, позволяющим провести идентификацию пробы в лаборатории без затруднений.

При отборе проб должны строго соблюдаться требования безопасности, отвечающие действующим нормам и правилам.

Порядок отбора проб пищевых продуктов

Общие требования:

Отбор проб является начальным этапом санитарно-эпидемиологической экспертизы пищевых продуктов, призванным при оптимальных затратах времени и средств обеспечить представительность проб, наиболее полно и достоверно характеризующих исследуемую партию продуктов (при экспертизе партии) или отдельного образца.

Партией считается продукция одного вида, сорта и наименования, выработанная за одну смену и оформленная одним документом о качестве, который должен содержать следующие сведения: наименование предприятия-изготовителя, его подчиненность и местонахождение, наименование продукции и дату выработки, ссылку на нормативный документ, срок годности, температурный режим хранения и реализации.

Продукты с явно выраженными признаками порчи (резкий, неприятный гнилостный запах, изменения консистенции, цвета, наличие глубокого или значительного поражения плесенью и др.), признанные при осмотре непригодными для питания, могут браковаться на месте, без лабораторного исследования при обязательном составлении акта с обоснованием причины забраковки.

При санитарно-эпидемиологической экспертизе отбор проб пищевых продуктов проводит, как правило, врач по гигиене питания, при его отсутствии - помощник санитарного врача. При проведении производственного контроля отбор проб проводит специально обученный работник данного предприятия, имеющий свидетельство о прохождении обучения.

При экспертизе партии порядок отбора и количество проб, обеспечивающие представительность пробы контролируемого вида пищевых продуктов, определены соответствующими нормативными документами.

Порядок отбора проб пищевых продуктов при экспертизе партии включает в себя: выделение однородной партии, определение числа и отбор точечных проб, составление объединенной пробы и формирование из нее средней пробы, которая направляется на лабораторные исследования.

Экспертиза партии проводится в соответствии с действующей Инструкцией о порядке проведения гигиенической экспертизы пищевых продуктов в учреждениях Госсанэпидслужбы.

При проведении санитарно-эпидемиологической экспертизы образца пищевого продукта в рамках государственного санитарно-эпидемиологического надзора и производственного контроля на лабораторные исследования направляется часть объединенной пробы продукта. Заключение по образцу не является основанием для оценки партии.

Пробы продуктов для микробиологических анализов отбирают до отбора проб для физико-химических и органолептических анализов. Пробы от пищевых продуктов отбирают асептическим способом, исключающим микробное загрязнение продукта из окружающей среды. Пробы отбирают в стерильную посуду, горло которой предварительно обжигают в пламени горелки, с помощью стерильных инструментов.

Пробы в виде коробок, банок, плиток, пачек и др. завертывают в плотную бумагу и перевязывают шпагатом. Пробы, отобранные от весовых продуктов (в транспортной таре: ящиках, мешках, контейнерах и др.), помещают в чистые сухие банки с притертыми стеклянными или хорошо пригнанными резиновыми пробками, или заворачивают в пергамент, целлофан, полимерную пленку, или упаковывают в пластмассовые коробки с крышками. Пробы, требующие особых условий хранения (при пониженных температурах), помещают в сумку-холодильник или обкладывают сухим льдом. Транспортировка образцов пищевых продуктов должна осуществляться в условиях, обеспечивающих сохранение их качества и безопасность, специально оборудованным для таких целей транспортным средством, имеющим оформленный в установленном порядке санитарный паспорт.

Отобранные на объектах пробы, предназначенные для анализа, составляется акт отбора проб, в котором указывают: порядковый номер пробы; наименование изделия; наименование предприятия-изготовителя и его местонахождение; дату и час выработки изделий (особо скоропортящихся); дату и место отбора пробы; номер партии; массу пробы; объем партии, от которой отобрана проба; для каких исследований и куда направляется проба; по какому нормативному документу или ГОСТу отобрана проба; фамилию и должность лица, отобравшего пробу; фамилию и должность представителя предприятия, в присутствии которого производился отбор.

В случае разногласий между представителями Госсанэпидслужбы и изготовителем или предприятием, реализующим продукцию, а также при отборе проб по санитарно-эпидемиологическим показаниям число образцов пищевых продуктов, предназначенных для исследования, должно быть увеличено.


6.Аналитические методы определения кадмия в образцах


После отбора и подготовки пробы наступает стадия химического анализа, на которой и проводят обнаружение компонента или определение его количества. С этой целью измеряют аналитический сигнал. В большинстве методов аналитическим сигналом является среднее из измерений физической величины на заключительной стадии анализа, функционально связанной с содержанием определяемого компонента.

В случае необходимости обнаружения какого-либо компонента обычно фиксируют появление аналитического сигнала - появление осадка, окраски, линии в спектре и т.д. Появление аналитического сигнала должно быть надежно зафиксировано. При определении количества компонента измеряется величина аналитического сигнала - масса осадка, сила тока, интенсивность линии спектра и т.д.

Химические методы.

В основе химических методов обнаружения и определения лежат химические реакции трех типов: кислотно-основные, окислительно-восстановительные и комплексообразования. Иногда они сопровождаются изменением агрегатного состояния компонентов. Наибольшее значение среди химических методов имеют гравиметрический и титриметрический. Эти аналитические методы называются классическими. Критериями пригодности химической реакции как основы аналитического метода в большинстве случаев являются полнота протекания и большая скорость.

Гравиметрические методы.

Гравиметрический анализ заключается в выделении вещества в чистом виде и его взвешивании. Чаще всего такое выделение проводят осаждением. Реже определяемый компонент выделяют в виде летучего соединения (методы отгонки). В ряде случаев гравиметрия - лучший способ решения аналитической задачи. Это абсолютный (эталонный) метод.

Недостатком гравиметрический методов является длительность определения, особенно при серийных анализах большого числа проб, а так же неселективность - реагенты-осадители за небольшим исключением редко бывают специфичны. Поэтому часто необходимы предварительные разделения.

Аналитическим сигналов в гравиметрии является масса.

Титриметрические методы.

Титриметрическим методом количественного химического анализа называют метод, основанный на измерении количества реагента В, затраченного на реакцию с определяемым компонентом А. Практически удобнее всего прибавлять реагент в виде его раствора точно известной концентрации. В таком варианте титрованием называют процесс непрерывного добавления контролируемого количества раствора реагента точно известной концентрации (титрана) к раствору определяемого компонента.

В титриметрии используют три способа титрования: прямое, обратное и титрование заместителя.

Прямое титрование - это титрование раствора определяемого вещества А непосредственно раствором титрана В. Его применяют в том случае, если реакция между А и В протекает быстро.

Обратное титрование заключается в добавлении к определяемому веществу А избытка точно известного количества стандартного раствора В и после завершения реакции между ними, титровании оставшегося количества В раствором титрана В. Этот способ применяют в тех случаях, когда реакция между А и В протекает недостаточно быстро, либо нет подходящего индикатора для фиксирования точки эквивалентности реакции.

Титрование по заместителю заключается в титровании титрантом В не определяемого количества вещества А, а эквивалентного ему количества заместителя А, получающегося в результате предварительно проведенной реакции между определяемым веществом А и каким-либо реагентом. Такой способ титрования применяют обычно в тех случаях, когда невозможно провести прямое титрование.для фиксирования точки эквивалентности реакции.

Титрование по заместителю заключается в титровании титрантом В не определяемого количества вещества А, а эквивалентного ему количества заместителя А, получающегося в результате предварительно проведенной реакции между определяемым веществом А и каким-либо реагентом. Такой способ титрования применяют обычно в тех случаях, когда невозможно провести прямое титрование.

Кинетические методы.

Кинетические методы основаны на использовании зависимости скорости химической реакции от концентрации реагирующих веществ, а в случае каталитических реакций и от концентрации катализатора. Аналитическим сигналом в кинетических методах является скорость процесса или пропорциональная ей величина.

Реакция, положенная в основу кинетического метода, называется индикаторной. Вещество, по изменению концентрации которого судят о скорости индикаторного процесса, - индикаторным.

Биохимические методы.

Среди современных методов химического анализа важное место занимают биохимические методы. К биохимическим методам относят методы, основанные на использовании процессов, происходящих с участием биологических компонентов (ферментов, антител и т.п.). Аналитическим сигналом при этом чаще всего являются либо начальная скорость процесса, либо конечная концентрация одного из продуктов реакции, определяемая любым инструментальным методом.

Ферментативные методы основаны на использовании реакций, катализируемых ферментами - биологическими катализаторами, отличающимися высокой активностью и избирательностью действия.

Иммунохимические методы анализа основаны на специфическом связывании определяемого соединения - антигена соответствующими антителами. Иммунохимическая реакция в растворе между антителами и антигенами - сложный процесс, протекающий в несколько стадий.


7. Выбор вида индикатора. Популяционные характеристики, используемые для оценки популяции под действием кадмия


Некоторые экотоксикологические показатели, характеризующие состояние природных популяций животных при токсическом загрязнении среды обитания, рассмотрены выше. В силу трудоемкости таких оценок невозможно детально анализировать состояние популяций даже ограниченного числа видов. Поэтому проблема выбора минимального числа видов-индикаторов, оценка состояния которых может в достаточной степени отражать состояние природных экосистем, требует серьезного обоснования.

По С.С.Шварцу, в структуре природных биогеоценозов могут быть выделены немногочисленные популяции видов-доминантов, определяющих продуктивность биоценоза и его своеобразие. Остальные популяции представлены многочисленными видами-сателлитами, обеспечивающими необходимые условия для протекания биогеохимических циклов, характерных для данного ценоза.

Опыт использования различных групп животных, растений и микроорганизмов в качестве биоиндикаторов состояния экосистем показывает, что одного универсального индикатора подобрать невозможно. Невозможно подобрать и универсальные критерии к отбору видов-индикаторов состояния экосистем. Эти критерии становятся противоречивыми и не сочетающимися в одном виде, как только задача характеристики экосистемы начинает уточняться.В качестве примера приведем дождевых червей - наиболее удобный вид-индикатор состояния почв. В силу специфики экологии этого вида он наиболее чувствителен к загрязнению почв тяжелыми металлами и радиоактивными элементами. Успешно используется и лихеноиндикация, основанная на высокой чувствительности лишайникового покрова к загрязнению атмосферы сернистыми соединениями.

Наиболее рационально использование видов, отражающих состояние компонентов природных экосистем. Выбор этот должен удовлетворять следующим требованиям:

среди видов-индикаторов должны быть продуценты, консументы, редуценты;

среди видов консументов должны быть представители основных трофических звеньев.

Таким образом, выделенные виды-индикаторы должны отражать неспецифические ответы экосистем на разнообразные виды токсического и иного воздействия. Это позволяет рассматривать их состояние в качестве сочетанного ответа на одновременное действие многих токсических факторов. В силу неизбежной неполноты имеющейся информации, сложности и нелинейности характера реакции природных экосистем на токсическое воздействие в настоящее время не существует сколько-нибудь надежных методов диагностики их состояния в условиях загрязнения природной среды.

Отмеченная сложность и неоднозначность диагностики состояния природных экосистем не исключает необходимости введения некоторого единого подхода, позволяющего классифицировать территорию по степени экологического неблагополучия.

Несмотря на то что здоровье человека регламентируется системой санитарно-гигиенических нормативов, упоминание в тексте Закона состояния здоровья населения оправдано, поскольку оно определяется природной средой.

Биотестирование

Биотестирование представляет собой методический прием, основанный на оценке действия фактора среды, в том числе токсического, на организм, его отдельную функцию или систему организмов (Методы биотестирования…, 1989). Согласно Морозовой (2001) биотестирорвание - это метод моделирования последствий воздействия фактора, обладающего общебиологическим действием на живое. Главная задача, решаемая биотестированием ? это получение быстрого ответа - есть или отсутствует токсичность (Тарасенко, 1999). Евгеньев (1999) под биотестированием понимает приемы исследования, при котором о качестве среды, факторах, действующих самостоятельно или в сочетании u1089 с другими, судят по выживаемости, состоянию и поведению специально помещенных в эту среду организмов - тест-объектов. Тест-объекты должны отвечать следующим требованиям:

. Высокая чувствительность к воздействиям даже малых доз мутагена.

. Быстрота и экономичность методов тестирования.

. Воспроизводимость (возможность получения аналогичных результатов на этой же тест-системе).

. Чувствительность не только к мутагенам, но и к их метаболитам. 14

. Возможность экстраполировать данные, полученные при исследованиях in vitro на условия in vivo (Дмитриева, Парфёнов, 1991).

Биотестирование не отменяет систему аналитических и аппаратурных методов контроля природной среды, а лишь дополняет ее качественно новыми биологическими показателями, так как с экологической точки зрения сами по себе результаты определения концентрации токсикантов имеют относительную ценность (Патин, 1981). По мнению Оливернусовой (1991), использование биологических тест-систем позволяет определить изменения в экосистемах на очень ранней стадии, когда они еще не проявляются в виде морфологических и структурных изменений и их нельзя выявить другими методами. Это дает возможность предвидеть нарушения экосистемы и вовремя принять меры. Кроме того, состояние биоиндикаторов можно использовать как дополнительную информацию при оценке здоровья населения. По словам Егоровой (2002) кумулятивный эффект всего многообразия сочетаний различных воздействий возможно оценить лишь с помощью биотестирования. Тарасенко (1999) рассматривает биотестирование как введение в более тщательный и всесторонний анализ химического состава воды. Вопросам биотестирования загрязненности воды поллютантами посвящены многие работы (Илющенко, Щегольков, 1990; Морозова с соавт., 2001; Христова, Безруков, 1994).

Несмотря на некоторые недостатки биотестирования (трудностью учета адаптационно-приспособительных изменений тест-организмов; фазностью и сезонностью их реагирования, вызванной стимуляцией физиологических функций под воздействием малых концентраций загрязняющих веществ и их угнетением под воздействием больших концентраций; различием метаболизма водных растений и животных и др.) (Бутаев с соавт., 2002). Перспективность контроля антропогенного загрязнения природных вод с помощью биотестов обоснована многочисленными исследованиями, и в Российской Федерации с 1991 г. Оно 15 стало обязательным элементом экологического мониторинга (Правила охраны поверхностных вод…, 1991). Кроме того, методы биотестирования нашли свое отражение в таких нормативных документах, как РД 118-02-90; РД 52.18.344-93; ПНД Ф Т 14.1:2:3:4.4-99; СП 2.1.7.1386-03 и др). В 15 субъектах продолжался эксперимент, направленный на внедрение методов биотестирования в области оценки качества возвратных вод и определения платы за сброс с учетом суммарной токсичности загрязняющих веществ. На основе результатов эксперимента подготовлена "Инструкция по расчету платы за сброс в водные объекты загрязняющих веществ с учетом их суммарной токсичности", которая направлена на рассмотрение в Минфин России и Минэкономики России (Государственный доклад …, 1999)

Биоиндикация - родственный биотестированию прием, использующий для этих же целей организмы, обитающие в исследуемой среде. При выборе таких организмов приходится соблюдать определенные требования, среди которых возможность фиксировать четкий, воспроизводимый и объективный отклик на воздействие внешних факторов, чувствительность этого отклика на малые содержания загрязнителей и др. (Егоров, Егорова, 1999; Волков 2001; Егоров с соавт., 2001; Михайлуц с соавт., 2001; Федорова 2002).

Известен пример биотестирования, основанный на использовании канареек для индикации появления рудничного газа в горных выработках горняками в средние века. Поведение птицы или ее гибель оповещали шахтеров о грозящей им опасности.

Биоиндикацию можно проводить на уровне молекул, клеток, органов (систем органов), организмов, популяций и даже биоценоза. Повышение уровня организации живой природы может приводить к усложнению, неоднозначности взаимосвязи биологического u1086 отклика антропогенными факторами исследуемой среды, поскольку на них могут накладываться и природные факторы. Поэтому в качестве биотестов выбирают наиболее чувствительные к исследуемым загрязнителям организмы.

Использование биохимических реакций (молекулярный уровень индикации) связано с тем, что они наиболее чувствительны к воздействию внешних загрязнителей. В присутствии загрязнителей окружающей среды, например, происходит уменьшение содержания хлорофилла в мембранах хлоропластов растений или понижается способность фитопланктона к продуцированию кислорода в процессе фотосинтеза. Это может служить индикаторным признаком воздействия на живую природу газопылевых выбросов предприятий или токсичных компонентов сточных вод (Евгеньев, 1999).

При проведении биологического тестирования на уровне организмов выбор биологических переменных предполагает, что отклик должен коррелировать с изменениями на экосистемном уровне. Выявить такую зависимость на практике достаточно сложно. Однако такие показатели организмов, как рост особей, их продуктивность, выживаемость, состояние органов дыхания, состава крови и плазмы, удается использовать для биологического тестирования состояния среды (Евгеньев, 1999).

Чувствительность отклика биотестов на содержание биологически активных веществ в испытуемой среде можно проиллюстрировать на примерах. Многие организмы способны аккумулировать (накапливать) химические загрязнители выше их естественного содержания в воде и почве без быстро проявляющихся нарушений. Такая способность тест-организмов оказалась полезной в качестве индикаторного признака загрязнения окружающей среды и используется для аккумулятивной биоиндикации. Этот прием биотестирования применяют при исследовании процессов миграции токсичных веществ в окружающей среде. В качестве тест-организмов выбирают те из них, которые имеют высокий коэффициент биологического накопления (КН) токсикантов из окружающей среды. Величина КН зависит от природных факторов. Бензпирен в гидробиоте Берингова моря накапливается с КН, равным 2,9 " 103, а в теплых водах Средиземного моря накопление возрастает в пять раз. Знание КН оказалось удобным для глобального и регионального мониторинга окружающей среды.

Перечисленные методы не исчерпывают области применения биотестов для оценки загрязнения биосферы и прогноза влияния загрязнителей на живую природу. Несмотря на сложность выявления биологического отклика на воздействие внешних факторов, озабоченность состоянием экологии, очевидно, будет стимулировать дальнейшее развитие этих биоаналитических методов (Евгеньев, 1999).

Итак, несмотря на большое количество физико-химических методов диагностики состояния окружающей среды вопрос об использовании методов биотестирования остается открытым и требует детального рассмотрения вопросов применения конкретных тест-систем к конкретным случаям.


8.Токсикологические методы оценки воздействия присутствующей дозы кадмия на компоненты биоты


В решении экологических задач наиболее эффективным остается химический эксперимент, и не только эвристический, при котором учащиеся работают по четким инструкциям учителя и под его наблюдением, но и исследовательский. При таком эксперименте возможна различная степень самостоятельности учащихся. Ученическое исследование сочетает в себе использование теоретических знаний и эксперимента, требует умения прогнозировать, строить план исследования, а в некоторых случаях учащийся сам формулирует проблему, выдвигает гипотезу и разрабатывает эксперимент для ее проверки. Таким образом, при данной форме эксперимента от учащихся требуется максимальная самостоятельность. В настоящее время учителя используют много опытов с экологическим содержанием, часть которых посвящена изучению влияния различных антропогенных факторов на живой организм, в частности на белки, в том числе и на ферменты. Предлагаю опыт по исследованию влияния токсиканта на уреазу. Рассматриваемый фермент широко распространен в растительном мире, особенно высока активность уреазы в семенах некоторых бобовых. Для проведения эксперимента рекомендуем использовать уреазу арбузных семечек. В них активность этого фермента сохраняется в течение трех лет. Можно взять семечки кабачка, в них активность уреазы сохраняется в течение одного года. Лучше же брать семечки из свежих плодов. Уреаза катализирует гидролиз мочевины с образованием оксида углерода(IV) и аммиака:

Метод определения активности уреазы основан на тестировании выделяющегося аммиака фенолфталеином. Наглядность данного опыта обеспечивается быстрым появлением интенсивной розовой окраски индикатора.

Реактивы и оборудование: ступка с пестиком, пробирки, пипетки, 1 % раствор мочевины, 0,02 % спиртовой раствор фенолфталеина, дистиллированная вода, экстракт фермента, рабочие растворы токсикантов.

Приготовление экстракта уреазы

Очистить 3-4 арбузных семечка от кожуры и растереть ядра в ступке с 10 мл воды. Данный экстракт слить в пробирку и использовать для проведения опытов.

Ход опыта

Для опытов взять 2 мл суспензии ферментативного препарата. В пробирку добавить 1 мл воды или токсиканта (соли тяжелого металла), встряхнуть и добавить 2 мл раствора мочевины. Следует подчеркнуть, что необходимо добавлять реагенты в той последовательности, о которой сказано выше. Затем в пробирку добавить 2-3 капли спиртового раствора фенолфталеина, оставить при комнатной температуре на 3-5 мин. По интенсивности появляющейся окраски фенолфталеина судят об ингибировании фермента. Если окраска появляется, значит, уреаза сохраняет свою активность, так как выделяется аммиак, а если окраска индикатора не появляется, значит, реагент ингибирует фермент. В опытах используются различные концентрации токсикантов. Готовить растворы солей и фенола необходимо с учетом разбавления при проведении опыта. Токсиканты в одних концентрациях ингибируют фермент, в других нет. Исследовательский компонент эксперимента состоит в нахождении такой концентрации фактора, при которой начинается ингибирование уреазы.

Влияние катионов тяжелых металлов на активность фермента

Поступая в биосферу, тяжелые металлы активно включаются в различные миграционные циклы эко- и геосистем и представляют потенциальную опасность для всего живого. Соединения тяжелых металлов способны сохранять токсичность практически бесконечно, так как при их превращении металл остается без изменений. Катионы металлов, поступающие в организм человека или животного из окружающей среды, образуют прочные связи с карбоксил-анионами и часто вызывают разрывы ионных взаимодействий между ионизированными боковыми радикалами аминокислотных остатков в глобуле, что приводит к потере активной структуры белка. Они снимают электрическую поляризацию белка, уменьшая его растворимость. Вследствие этого находящийся в растворе белок выпадает в осадок. Попадая в клетки, хром, как и многие другие тяжелые металлы, дезактивирует ферменты, взаимодействуя с SH - группами белков - составляющих ферментов.

Изучение влияния солей тяжелых металлов на активность уреазы. В качестве токсиканта надо использовать раствор двухромовокислого калия К2Сr2O7 в различных концентрациях (10-6, 10-7, 10-8, 10-9 моль/л). Эксперимент следует проводить по вышеприведенной методике.


Выводы и предложения


Неконтролируемое загрязнение окружающей среды тяжелыми металлами угрожает здоровью людей.

В связи с этим необходимо максимально снизить уровень поступления тяжелых металлов в организм человека. В частности, путем получения продукции растениеводства (пищи для человека и сельскохозяйственных животных, которые в свою очередь также являются источником продуктов питания для человека) свободной от загрязнения тяжелыми металлами. Следовательно, необходимо проводить химический анализ почв на содержание каждого из наиболее опасных металлов.

Для получения продукции растениеводства, свободной от тяжелых металлов, на почвах с повышенным их содержанием необходимо:

провести агрохимическое обследование пашни, определить содержание тяжелых металлов в почве

сопоставить содержание тяжелых металлов с содержанием калия и кальция

произвестковать кислые почвы

повысить содержание обменного калия в почве

исключить применение минеральных удобрений, содержащих тяжелые металлы

подобрать культуры, минимально потребляющие эти элементы; на сильно загрязненных полях можно выращивать культуры для технической переработки

периодически проводить контроль продукции на содержание тяжелых металлов

Кроме того, снизить воздействие тяжелых металлов на здоровье населения можно путем решения следующих задач:

. организация точного и оперативного контроля выбросов тяжелых металлов в атмосферу и воду;

. прослеживание цепей миграции тяжелых металлов от источников до человека;

. налаживание широкого и действенного контроля (на различных уровнях, вплоть до бытового) содержания тяжелых металлов в продуктах питания, воде и напитках.

. проведение выборочных, а затем и массовых обследований населения на содержание тяжелых металлов в организме.

Подобные меры применяются в ряде развитых стран. В США реализуется национальная программа массовых обследования детей на содержание свинца в крови, государством финансируются разработки необходимых технических средств.

Сложности решения указанных задач состоят в том, что 1) миграция и токсичность элементов зависят от физико-физических форм, поэтому методы анализа должны давать возможность определять связанные и лабильные формы вещества, степень окисления элементов; 2) средства контроля должны обладать низким порогом обнаружения, высокой селективностью и низкой стоимостью.

Наиболее сложной и слабо изученной проблемой является медико-санитарное нормирование воздействия элементов на жизнедеятельность. ПДК и другие нормы выведены эмпирически, при отсутствии общей теории вопроса. Они не учитывают даже главные особенности химизма природных и техногенных систем, для которых предназначены, и не всегда привязаны к определенным соединениям или формам нахождения элементов.

Не решены вопросы суммарного влияния нескольких элементов - эффектов их антагонистического (снижающегося) или синергетического (увеличивающегося) взаимодействия. Эта проблема наиболее остра, так как обычно в экогеохимических системах присутствуют ассоциации большого числа элементов.


Библиографический список


http://www.bestreferat.ru/referat-61878.html://www.krugosvet.ru/enc/nauka_i_tehnihttp://encyclopaedia.biga.ru/enc/science_and_technology/KADMI.htmlk http://www.bibliofond.ru/view.aspx?id=664521a/himiya/KADMI.html?page=0,4://xreferat.ru/10/518-1-izuchenie-toksicheskogo-vliyaniya-kadmiya-na-aktivnost-aminotransferaz-u-potomstva-belyh-krys.html://encyclopaedia.biga.ru/enc/science_and_technology/KADMI.html://referat.yabotanik.ru/jekologiya/toksikologicheskie-metody-ocenki-vozdejstviya-prisutstvujushhej-dozy/199281/186392/page4.html


Теги: Токсичность кадмия и методы воздействия его на окружающую среду  Курсовая работа (теория)  Экология
Просмотров: 12435
Найти в Wikkipedia статьи с фразой: Токсичность кадмия и методы воздействия его на окружающую среду
Назад