Регрессионный анализ

Министерство образования и науки российской федерации

Федеральное государственное автономное образовательное учреждение высшего профессионального образования

Дальневосточный федеральный университет

Школа экономики и менеджмента

Кафедра бизнес-информатики и экономико-математических методов


ЛАБОРАТОРНАЯ РАБОТА

по дисциплине «Имитационное моделирование»

Специальность 080801.65 «Прикладная информатика (в экономике)»

РЕГРЕССИОННЫЙ АНАЛИЗ


Рудакова

Ульяна Анатольевна


г. Владивосток


ОТЧЕТ


Задание: рассмотреть процедуру регрессионного анализа на основе данных (цена продажи и жилая площадь) о 23 объектах недвижимости.

Режим работы "Регрессия" служит для расчета параметров уравнения линейной регрессии и проверки его адекватности исследуемому процессу.

Для решения задачи регрессионного анализа в MS Excel выбираем в меню Сервис команду Анализ данных и инструмент анализа "Регрессия".

В появившемся диалоговом окне задаем следующие параметры:

1.Входной интервал Y - это диапазон данных по результативному признаку. Он должен состоять из одного столбца.

2.Входной интервал X - это диапазон ячеек, содержащих значения факторов (независимых переменных). Число входных диапазонов (столбцов) должно быть не больше 16.

.Флажок Метки, устанавливается втом случае, если в первой строке диапазона стоит заголовок.

.Флажок Уровень надежности активизируется, если в поле, находящееся рядом с ним необходимо ввести уровень надежности, отличный от установленного по умолчанию. Используется для проверки значимости коэффициента детерминации R2 и коэффициентов регрессии.

5.Константа ноль. Данный флажок необходимо установить, если линия регрессии должна пройти через начало координат (а0=0).

6.Выходной интервал/ Новый рабочий лист/ Новая рабочая книга - указать адрес верхней левой ячейки выходного диапазона.

.Флажки в группе Остатки устанавливаются, если необходимо включить в выходной диапазон соответствующие столбцы или графики.

.Флажок График нормальной вероятности необходимо сделать активным, если требуется вывести на лист точечный график зависимости наблюдаемых значений Y от автоматически формируемых интервалов персентилей.

После нажатия кнопки ОК в выходном диапазоне получаем отчет.

С помощью набора средств анализа данных выполним регрессионный анализ исходных данных.

Инструмент анализа "Регрессия" применяется для подбора параметров уравнения регрессии с помощью метода наименьших квадратов. Регрессия используется для анализа воздействия на отдельную зависимую переменную значений одной или нескольких независимых переменных.

ТАБЛИЦА РЕГРЕССИОННАЯ СТАТИСТИКА

Величина множественный R - это корень из коэффициента детерминации (R-квадрат). Также его называют индексом корреляции или множественным коэффициентом корреляции. Выражает степень зависимости независимых переменных (X1, X2) и зависимой переменной (Y) и равен квадратному корню из коэффициента детерминации, эта величина принимает значения в интервале от нуля до единицы. В нашем случае он равен 0,7, что говорит о существенной связи между переменными.

Величина R-квадрат (коэффициент детерминации), называемая также мерой определенности, характеризует качество полученной регрессионной прямой. Это качество выражается степенью соответствия между исходными данными и регрессионной моделью (расчетными данными). Мера определенности всегда находится в пределах интервала [0;1].

В нашем случае величина R-квадрат равна 0,48 , т.е. почти 50%, что говорит о слабой подгонке регрессионной прямой к исходным данным.Т.к. найденная величина R-квадрат = 48%<75%, то, следовательно, также можно сделать вывод о невозможности прогнозирования с помощью найденной регрессионной зависимости. Таким образом, модель объясняет всего 48% вариации цены, что говорит о недостаточности выбранных факторов, либо о недостаточном объеме выборки.

Нормированный R-квадрат - это тот же коэффициент детерминации, но скорректированный на величину выборки.

Норм.R-квадрат=1-(1-R-квадрат)*((n-1)/(n-k)),

регрессионный анализ линейный уравнение

где n - число наблюдений; k - число параметров. Нормированный R-квадрат предпочтительнее использовать в случае добавления новых регрессоров (факторов), т.к. при их увеличении будет также увеличиваться значение R-квадрат, однако это не будет свидетельствовать об улучшении модели. Так как в нашем случае полученная величина равна 0,43 (что отличается от R-квадрат всего на 0,05), то можно говорить о высоком доверии коэффициенту R-квадрат.

Стандартная ошибка показывает качество аппроксимации (приближения) результатов наблюдений. В нашем случае ошибка равна 5,1. Рассчитаем в процентах: 5,1/(57,4-40,1)=0,294 ? 29% (Модель считается лучше, когда стандартная ошибка составляет <30%)

Наблюдения - указывается число наблюдаемых значений (23).

ТАБЛИЦА ДИСПЕРСИОННЫЙ АНАЛИЗ

Для получения уравнения регрессии определяется -статистика - характеристика точности уравнения регрессии, представляющая собой отношение той части дисперсии зависимой переменной которая объяснена уравнением регрессии к необъясненной (остаточной) части дисперсии.

В столбце df - приводится число степеней свободы k.

Для регрессии это число регрессоров (факторов) - X1 (площадь) и X2 (оценка), т.е. k=2.

Для остатка это величина, равная n-(m+1), т.е. число исходных точек (23) минус число коэффициентов (2) и минус свободный член (1).

В столбце SS - суммы квадратов отклонений от среднего значения результирующего признака. В нем представлены:

Регрессионная сумма квадратов отклонений от среднего значения результирующего признака теоретических значений, рассчитанных по регрессионному уравнению.

Остаточная сумма отклонений исходных значений от теоретических значений.

Общая сумма квадратов отклонений исходных значений от результирующего признака .

Чем больше регрессионная сумма квадратов отклонений (или чем меньше остаточная сумма), тем лучше регрессионное уравнение аппроксимирует облако исходных точек. В нашем случае остаточная сумма составляет около 50%. Следовательно, уравнение регрессии очень слабо аппроксимирует облако исходных точек.

В столбце MS - несмещенные выборочные дисперсии, регрессионная и остаточная.

В столбце F вычислено значение критериальной статистики для проверки значимости уравнения регрессии.

Для осуществления статистической проверки значимости уравнения регрессии формулируется нулевая гипотеза об отсутствии связи между переменными (все коэффициенты при переменных равны нулю) и выбирается уровень значимости.

Уровень значимости - это допустимая вероятность совершить ошибку первого рода - отвергнуть в результате проверки верную нулевую гипотезу. В рассматриваемом случае совершить ошибку первого рода означает признать по выборке наличие связи между переменными в генеральной совокупности, когда на самом деле ее там нет. Обычно уровень значимости принимается равным 5%. Сравнивая полученное значение = 9,4 с табличным значением = 3,5 (число степеней свободы 2 и 20 соответственно) можно говорить о том, что уравнение регрессии значимо (F>Fкр).

В столбце значимость F вычисляется вероятность полученного значения критериальной статистике. Так как в нашем случае это значение = 0,00123, что меньше 0,05 то можно говорить о том, что уравнение регрессии (зависимость) значимо с вероятностью 95%.

Два выше описанных столба показывают надежность модели в целом.

Следующая таблица содержит коэффициенты для регрессоров и их оценки.

Строка Y-пересечение не связана ни с каким регрессором, это свободный коэффициент.

В столбце коэффициенты записаны значения коэффициентов уравнения регрессии. Таким образом, получилось уравнение:


Y=25,6+0,009X1+0,346X2


Регрессионное уравнение должно проходить через центр облака исходных точек: 13,02?M(b)?38,26

Далее сравниваем попарно значения столбцов Коэффициенты и Стандартная ошибка. Видно, что в нашем случае, все абсолютные значения коэффициентов превосходят значения стандартных ошибок. Это может свидетельствовать о значимости регрессоров, однако, это грубый анализ. Столбец t-статистика содержит более точную оценку значимости коэффициентов.

В столбце t-статистика содержатся значения t-критерия, рассчитанные по формуле:


t=(Коэффициент)/(Стандартная ошибка)


Этот критерий имеет распределение Стьюдента с числом степеней свободы


n-(k+1)=23-(2+1)=20


По таблице Стьюдента находим значение tтабл=2,086. Сравнивая

t с tтабл получаем, что коэффициент регрессора X2 незначим.

Столбец p-значение представляет вероятность того, что критическое значение статистики используемого критерия (статистики Стьюдента) превысит значение, вычисленное по выборке. В данном случае сравниваем p-значения с выбранным уровнем значимости (0.05). Видно, что незначимым можно считать только коэффициент регрессора X2=0.08>0,05

В столбцах нижние 95% и верхние 95% приводятся границы доверительных интервалов с надежностью 95%. Для каждого коэффициента свои границы: Коэффициентtтабл*Стандартная ошибка

Доверительные интервалы строятся только для статистически значимых величин.

ТАБЛИЦА ВЫВОД ОСТАТКА

Остаток- это отклонение отдельной точки (наблюдения) от линии регрессии (предсказанного значения).

Предположение о нормальности остатков допускает, что распределение разницы предсказанных и наблюдаемых значений является нормальным. Для визуального определения характера распределения включаем функцию график остатков.

На графиках остатков отображаются разности между исходными значениями Y и вычисленными по функции регрессии для каждого значения компонента переменной X1 и X2. Он применяется для определения, является ли приемлемой используемая аппроксимирующая прямая.

График подбора может быть использован для получения наглядного представления о линии регрессии.

Стандартные остатки - нормированные остатки на оценку их стандартного отклонения.



Теги: Регрессионный анализ  Практическое задание  Менеджмент
Просмотров: 10208
Найти в Wikkipedia статьи с фразой: Регрессионный анализ
Назад