Расчет перекрытия

1. Расчет и конструирование монолитной плиты перекрытия


1.1 Компоновка монолитного ребристого перекрытия с балочными плитами


Рисунок 1.1. Компоновка монолитного ребристого перекрытия с балочными плитами


Расчетная схема монолитной плиты - 5-ти пролетная нагруженная балка (так как усилия во всех средних пролетах плиты незначительно отличаются от усилий в 3-м пролете) с промежуточными опорами из второстепенных балок, условной ширины 1 м, высотой 6 см, крайние опоры - шарнирно подвижные, промежуточные - шарнирно неподвижные.

Нагрузка - равномерно распределенная.

hпл=6cм - толщина плиты;

= 6 м - пролет главной балки;

Определяем высоту и ширину главной балки:

hгл.б может приниматься от l до l т.е. в нашем случае от 750 до 500 мм. Принимаем hгл.б = 700 мм

bгл.б может приниматься от hгл.б до hгл.б т.е. в нашем случае от 280 до 350 мм. Принимаем bгл.б = 350 мм

Определяем высоту и ширину второстепенной балки:

hвт.б может приниматься от l до l т.е. в нашем случае от 500 до 400 мм. Принимаем hгл.б = 440 мм

bвт.б может приниматься от hвт.б до hвт.б т.е. в нашем случае от 176 до 220 мм. Принимаем bвт.б = 200 мм


1.2 Выбор материалов


Исходные данные для проектирования плиты:

Бетон Кл.В15

Расчетные характеристики: Rb=8.5МПа,

Eb=23·103МПа

Арматура Вр-I

Расчетные характеристики: Rs=375МПа (d=3 мм), 365МПа (d=4 мм),

Es=1.7·105МПа


1.3 Сбор нагрузок


Материал пола - дерево.

Рисунок 1.2. Конструкция перекрытия


Табл.1.1. Сбор нагрузок на 1м2 перекрытия

Nп.п.НаименованиеНормативная нагр. кН/мКоэффициент надежн. ?sРасчетная нагр кН/м1Дощатый настил ?=0,029 м 0,029*5кН/м30,1451,20,1742Лага 0,06*0,1*50,0301,20,0364Ребристая плита, приведенная толщина 0,1 м*25кН/м32,51,12,75Итого2,6752,965Временная полезная нагрузка (V)8,01,29,6Итого10,67512,56

.2 Определение усилий


Рисунок 1.3. Расчетная схема - многопролетная неразрезная балка


Рисунок 1.4. Конструктивная схема


Так как размер здания в осях А - Е 30 м не делится на 1.8 м (расстояние между осями второстепенных балок) без остатка, то крайние пролёты принимаем по 1.5 м, а остальные по 1.8 м.


Mпр1= Mоп1=q*l12/11 (при рулонном армировании усилие в крайнем пролете и на крайней опоре)


Mпр2= Mоп2=q*l22/16

l1=l-c-bвб/2+t/2, l1=1500-200+60-100=1260, l1=1.26 м

l2=l - bвб, l2=1800-200=1600, l2=1.6 м


q=12.56кН/м2


Mпр1= Mоп1=12.56*1.262/11=1.73 кН*м

Mпр2= Mоп2=12.56*1.62/16=1.92 кН*м


На основе метода предельного равновесия определяется h монолитной плиты


M=A0R*Rb*b*h02


A0R - граничный статический момент сжатой зоны бетона


A0R=?r*(1-?r/2)


? = x/h0 - относительная высота сжатой зоны бетона

h0 - рабочая высота бетона

? = ?r, ?r=0,1 - граничная относительная высота сжатой зоны бетона

A0R=0.1*(1-0,1/2)=0.095= Mпр1= Mоп1=2.5 кН*м - ширина плиты, b=1 м

?b2 - коэффициент условия работы по бетону

?b2=0.9


=h0+as


as=1cм (по СНиП 2.03.01-84)=5.01+1=6.01cм

h=6cm


.3 Расчет прочности нормального сечения плиты


zb - плечо внутренней пары сил

As - площадь арматуры

?x=0

?M=0


Ab=b*x

?=x/h0; zb=(h0-x/2)= A0*Rb*b*h02bAb= RsAs= A0R*Rb*b*h02* ?b20=M/ Rb*b*h0* ?b2; A0=0.1


?=1-?1-2* A0; ?=0.1


?=(1- ? /2); ?=0.995= Rb*b*h0* ?b2* ?/Rs; As=0.94cm2; As=1.26сеч= Rs*As* h0* ?; Mсеч=2.2451.87kN\m2

(Mсеч-M/ Mсеч)*100%=16.9 Mсеч%


Принимается арматура 10ø 4 Вр - I (C - 1) C - 1 4 Вр - I - 100 7640×25960 20

3 Вр - I - 300 20- 2 4 Вр - I - 100 7640×21880 20

Вр - I - 300 40

Так как приопорные моменты получились меньше остальных - дополнительную сетку рассчитывать не надо.


Рисунок 1.5. Схема армирования (разрез)


Рисунок 1.6. Сетки


2. Расчет и конструирование сборного перекрытия


.1 Компоновка конструктивной схемы сборного перекрытия.


Несущими элементами здания с неполным каркасом являются несущие кирпичные стены, колонны и опирающиеся на них ригели. Ригели располагаются в поперечном направлении для повышения пространственной жесткости производственного здания. По ригелям укладываются плиты перекрытия (связевые, рядовые и доборные).


Рисунок 2.1. Компоновка сборного балочного перекрытия


2.2 Расчет и конструирование сборной предварительно напряжённой плиты перекрытия


В соответствии с действующей нагрузкой (8кН/м2), принимаем в качестве сборного перекрытия ребристую плиту без поперечных ребер.



Целью расчета по первой группе предельных состояний является обеспечение:

прочности верхней полки на местный изгиб;

прочности поперечных ребер по нормальному сечению на действие изгибающего момента к наклонному сечению на действие поперечной силы;

прочности продольных предварительно-напряженных ребер по нормальному и по наклонному сечениям.

Целью рачета по второй группе предельных состояний является:

определение максимальных значений прогибов от кратковременных и длительно действующих нагрузок;

расчет по образованию трещин;

определение максимального раскрытия трещин от кратковременных и длительно действующих нагрузок;

- расчет по закрытию трещин.


Табл.1.1. Сбор нагрузок на 1м2 перекрытия

Nп.п.НаименованиеНормативная нагр. кН/мКоэффициент надежн. ?sРасчетная нагр кН/м1Конструкция пола0,1751,20,212Ребристая плита2,51,12,75Итого2,6752,963Временная полезная нагрузка (V)81,29,6в том числеКратковременная Vsh (30%)2,41,22,88Длительно действующая Vl (70%)5,61,26,72Полная10,67512,56в том числеДлительная8,2759,68Кратковременная2,42,88

Погонная нагрузка на 1 п.м. длины плиты определяется умножением нагрузки на 1м2 на номинальную ширину плиты.

Приведенная толщина определяется делением объема бетона плиты на площадь, перекрываемую ею: ?=V/A=0.9м3/9м2=100 мм

Расчет прочности продольных ребер по нормальным сечениям

Определение усилий

Расчетная схема плиты представляет собой свободно опертую однопролетную балку таврового сечения с полкой в сжатой зоне, загруженную равномерно распределенной нагрузкой.



Подсчитываются расчетные изгибающие моменты

от полной расчетной нагрузки M=(q*lo2*?n)/8

lo - расчетная длина плиты, q - полная расчетная нагрузка

q=12.56*1.485kN lo=5.72m M=74.50 м*кН


от полной нормативной нагрузки Mn=(qn*lo2*?n)/8


qn= 10.68*1.485 кН Mn=63.31 м*кН


от суммарной нормативной длительной нагрузки Mnl=(qnl*lo2*?n)/8


qnl=8.28*1.485kN Mnl=49.07m м*кН


от нормативной кратковременной нагрузки Mnsh=(vsh*lo2*?n)/8


vsh=2.4*1.485kN Mnsh=14.23 м*кН


Максимальная расчетная поперечная сила (на опорах) Q=q*lo/2

Q=51.64 кН

Определение параметров расчетного сечения

Расчетное сечение тавр с полкой в сжатой зоне


b=0.205 м bf=b+2*(1.485 м-0.24 м -0.025 м)/2


bf=0.74 м ?b2=0.9


?b2-коэффициент условия работы по бетону

a=0.03 м h=0.35 м

Рабочая высота сечения h0=h-a h0=0.32 м

Характеристика сжатой зоны


?=0.85-0.008*Rb* ?b2 Rb=17 Mpa


?=0.728Mpa

Граничная высота сжатой зоны


?R= ?/(1+?sr/ ?scu*(1 - ?/1.1))

?sr=Rs+400 - ?sp ?scu=500MPa при ?b2<1


Предварительно принимается ?sp=0.6*Rsser; Rsser=788 MPa;

Проверяются условия: ?sp< Rsser-P; ?sp>0.3* Rsser+P; P=30+360/l; l=6m

P=90MPa ?sp=475MPa; ?sr=427MPa

?R=0.565MPa

Предельное отклонение предварительного напряжения:


??sp=0.5*P/ ?sp*(1+1/?np); np - число напрягаемых стержней np=2

??sp=0.167 ??sp>0.1


Вычисляется коэффициент точности натяжения ?sp=1 - ??sp=0.833 по его величине корректируется величина предварительного напряжения

?sp=500MPa

Определение площади сечения рабочей арматуры

Определяется расчетный изгибающий момент, воспринимаемый полностью сжатой полкой таврового сечения при x=hf

Mper= Rb* ?b2*bf*(h0-0.5*hf)*hf; hf=0.05m


Mper - момент сечения полки

Mper=1.67 м*кН

Mper>M, то нижняя граница сжатой зоны проходит в полке, т.е.x<hf, и сечение рассчитывается как прямоугольное шириной bf и высотой h0.

Вычисляется:


A0=M/ Rb* ?b2*bf*h02 A0=0.064

?=1-?1-2* A0 ?=0.067

?=1 - ?/2 ?=0.967; ?*=1.15 (табл. 3.1


СНиП Бетонные и железобетонные конструкции). Определяется коэффициент условия работы преднапряженной арматуры ?s6


?s6= ?* - (?*-1)*(2*(?/?R) - 1) ?s6=1.265


Вычисляется сечение рабочей преднапряженной арматуры


Asp=M/Rs* ?s6* h0* ?;


Rs=680MPa; Asp=3.079cm2 по сортаменту подбираем

диаметр арматуры и число стержней 2Ø 14 (A-VI) Asp=3.08cm2


Mcer= Asp* Rs* ?s6* ?* h0 Mcer=113.895m*kN

((Mcer-M)/ Mcer)*100%=0.038%, принимается 2Ø 14 (A-VI)


2.3 Определение геометрических характеристик приведенного сечения


Определяется отношение модулей упругости ?=Es/Eb


Es=1.9/10-5MPa Eb=27/10-3MPa (Бетон В 25) ?=7.04


Вычисляется площадь приведенного сечения - Ared:


Ared=A1+A2+ ?* Asp=bf*hf; A1=370cm2=b*(h-hf); A2=615cm2


Ared=0.101m2

Sred-статический момент приведенного сечения относительно нижней растянутой грани I-I


Sred=S+ ?*Ssp as=0,03msp= Asp*as; Ssp=9.24 cm3 S=A1*y1+A2*y2=h-0.5*hf; y1=0.325m y2=0.5*(h-hf); y2=0.15m


S=0.012m3

Определяется момент инерции приведенного сечения относительно оси, проходящей через центр тяжести приведенного сечения


Ired=bf*(h-hf)3/12+bf*(h-hf)*y1I2+b*hf3/12+b*hf*y2I2+ ?* Asp*ys2


y1I=h-y0-hf/2; y0= Sred/ Ared; y0-расстояние от центра тяжести приведенного сечения до центра тяжести преднапряженной арматуры

y0=0.212m y1I=0.113mI= y0-y2; y2I=0.062 ms= y0 - as; ys=0.182m


Ired =0.0058m4

Момент сопротивления приведенного сечения по нижней грани

red= Ired/ y0; Wred=0.028m3


То же по верхней грани


Wred1= Ired/ (h0 - y0); Wred1=0.054m3


Упругопластичные моменты сопротивления

=?*Wred; ?=1.75 - для таврового сечения с полкой в сжатой зоне.

Wpl=0.048m; Wpl1=?*Wred1; Wpl1=0.094m


Рассчитывается расстояние от центра тяжести приведенного сечения до ядровых точек верхней:


r=?n*(Wred /Ared); ?n=1.6 - ?bp/Rbser; ?bp/Rbser=0.75; ?n=0.85


r=0.23m

и нижней:


rinf=?n*(Wred1 /Ared); rinf=0.454m


2.4 Определение потерь предварительного напряжения


Подсчет суммарных потерь ?los (табл. 5 СНиП 2.03.01-84) выполняется с коэффициентом точности натяжения ?sp=1 т.е. ?sp=0.6*Rsser; ?=588MPa

Первые потери (?los1):

от релаксации напряжений стержневой арматуры при электротермическом способе натяжения ?1=0.03* ?sp; ?1=14.18MPa

от температурного перепада, для пропаренных конструкций ?2=0

от деформации анкеров, при электротермическом способе натяжения ?3=0

от трения арматуры, при электротермическом способе натяжения ?4=0

от деформации стальной формы, при электротермическом способе натяжения ?5=30 MPa

При электротермическом способе натяжения определяется сумма первых потерь без учета ?6


?los11= ?1+ ?2+ ?3+ ?4 +?5; ?los11=44.18MPa


Величина предварительного напряжения за вычетом первых потерь


?sp11=?sp-?los11; ?sp11=428.62MPa


Усилие предварительного обжатия


P11= Asp* ?sp11; P11=132.01 kN


Эксцентриситет этого усилия равен:


eop=ys=0.182m

Величина сжимающих напряжений от усилия P11 на уровне центра тяжести преднапряженной арматуры:


?bp= P11/ Ared+ P11* eop* y0/ Ired; ?bp=2.18MPa


Уточняется передаточная прочность бетона Rbp по условию, ?bp/Rbp<0.75


?bp/Rbp=0.146


Вычисляется изгибающий момент в сечении по середине пролета от нормативной собственной массы плиты:


Mdser=qdser*b*l02/8


qd - нормативная собственная масса I m2 плиты

b-номинальная ширина плиты


qdser=2.45kN/m2 b=1.5m Mdser=15.45m*kN


Уточняется величина ?bp от действия P11 с учетом изгибающего момента от собственной массы плиты: ?bp= P11/ Ared+ P11* eop* y0/ Ired - Mdser* eop/ Ired

?bp=1.701MPa

определяется величина потерь от быстронатекающей ползучести:


?=0.25+0.025* Rbp; ?=0.625<0.8, ?bp/Rbp=0.134< ?, значит ?6=0.85*(40* ?bp/Rbp)


?6=3.855MPa

Подсчитывается полная сумма потерь ?los1= ?los11+ ?6

?los1=48.04MPa

Величина предварительного напряжения за вычетом суммарных первых потерь:


?sp1=?sp-?los1; ?sp1=424.76MPa


Определяется усилие обжатия с учетом суммарных первых потерь:


P1= Asp* ?sp1; P1=130.83 kN


Вторые потери (?los2):

от усадки бетона, ?8=35MPa

от ползучести бетона


?bp= P1/ Ared+ P1* eop2/ Ired - Mdser* eop/ Ired ?bp=1.681MPa


?=0.85; ?bp/Rbp=0.112<0.75, значит ?9=150* ? *?bp/Rbp; ?9=14.29MPa

Подсчитывается сумма вторых потерь ?los2= ?8+ ?9

?los2=49.29MPa

Подсчитывается величина полных потерь: ?los= ?los1+ ?los2

?los=97.329MPa

Величина предварительного напряжения с учетом полных потерь:


?sp2=?sp-?los; ?sp=375.471MPa


Определяется усилие обжатия с учетом полных потерь:


P= Asp* ?sp2; P=115.645kN

2.5 Расчет прочности наклонного сечения


Проверяется работа бетона на действие поперечной силы по наклонной полосе между наклонными трещинами:


Q<0.3*??1*?b1*Rb*b*h0

??1=1; ?b1=1-?* Rb; Rb=17Mpa; ?=0.01

.3*??1*?b1*Rb*b*h0=290.14kN


Q=51.636kN

.636kN <290.14kN, условие соблюдается

Проверяется работа бетона на действие поперечной силы по наклонной трещине:


Q<0.3*?b3*Rbt*b*h0*(1+?f+?n)


?f - коэффициент, учитывающий влияние сжатых полок


?f=0.75*((bf1-b)*hf)/b*h0; bf1=b+3*hf; hf=0.05m; bf1=0.355m; ?f=0.086


?n - коэффициент, учитывающий влияние продольной силы от предварительного обжатия


?n=0.1*P/(Rbt* b*h0)


P - усилие предварительного обжатия, определенное с учетом полных потерь, P=115.645 kN

Rbt=1.2MPa

?n=0.147; ?b3=0.6

0.3*?b3*Rbt*b*h0*(1+?f+?n)= 58.221kN


Q=51.636kN


Q?0.3*?b3*Rbt*b*h0*(1+?f+?n),


т.к. условие выполняется, поперечная арматура принимается конструктивно по требованиям СНиП 2.03-84* п. 5.27 на приопорных участках, равных при равномерно распределенной нагрузке 1/4 пролета, а при сосредоточенных нагрузках - расстоянию от опоры до ближайшего груза, но не менее 1/4 пролета, с шагом: при высоте сечения элемента h, равной или менее 450 мм: не более h/2 и не более 150 мм, на остальной части пролета при высоте сечения элемента h свыше 300 мм устанавливается поперечная арматура с шагом не более 3/4 h и не более 500 мм.

h/2=175 мм, 3/4 h=2625 мм, следовательно принимаем шаг поперечной арматуры; 15 см в приопорной зоне и 25 см в остальной части конструкции.



2.6 Проверка прочности плиты в стадии монтажа


Расчетная схема - однопролетная двухконсольная балка с равномерно распределенной нагрузкой от собственной массы плиты


Необходимо проверить прочность плиты в местах расположения петель.

Опасным является опорное сечение с изгибающим моментом:


Md=?din*qd*b*ls2/2


?din=1.4 - коэффициент динамичности

b=1.48m - ширина плиты

ls=0.8m - длина консоли


qd=2.25 kN/ m2

Md=1.492 m* kN


Моменты от силы обжатия для предварительно-напряженной плиты определяются относительно центра тяжести растянутой арматуры


Mp=-Pl*(h0-aI), где Pl=Asp*(?sp - ?los1 -?los,com)


?sp=588 MPa, ?los1=48.039 MPa, aI=0.03 m

?los,com - потери предварительного напряжения в арматуре при доведении бетона сжатой зоны до предельного состояния

?los,com=330 MPa

Asp - площадь сечения напрягаемой арматуры

Asp=3.08 cm2l=29.19 kN


Mp=-8.46 m* kN


Расчетный момент в опорном сечении


M= Md+ Mp

M= - 6.97 m* kN, принимаем M=6.97 m* kN


Расчетное сечение - тавр с полкой в растянутой зоне. В расчет принимается прямоугольник с шириной, равной ширине ребра b

Определяется


A0=M/ Rb* ?b2*b*h02 A0=0.022

?=1-?1-2* A0 ?=0.0219

?=1 - ?/2 ?=0.989


Подсчитывается площадь сечения арматуры: As= Rb* ?b2*b*h0* ?/Rs

Rs=355 MPa As=0.62 cm2

Принимается 2 стержня Ø 8 А-III (Кр-1) As=1.01 cm2

Усилие на одну петлю: N=q*l/3


q= ?din*qd*b, q=4.725 kN/m, l=6m, 3 - число нагруженных петель


N=9.45 kN

Предполагается, что это усилие воспринимается лишь одной петлей.


Тогда: As=N/ Rs, As=0.42 cm2


Rs=225 MPa



Принимается 4 петли Ø 8 (А-1) As=0.785 cm2


2.7 Расчет прочности полки плиты


Рис. 2.6. Определение расчетных пролетов и грузовых площадей полки плиты


Определяем пролеты в свету:

l1=1460-110*2=1240;

l2=5650

l2/l1=4/56>2, значит расчетная схема плиты много пролётная не разрезная балка. Для расчета условно выделяется полоса шириной 1 м, поэтому нагрузка на 1 м2 перекрытия одновременно является в то же время нагрузкой на 1 п.м полосы.

Расчетный момент в полке плиты:


рабочая высота сечения:

расчет площади сечения рабочей арматуры:


A0=M/ Rb* ?b2*b*h02 A0=0.029b=17 MPa; b=1m; h0=hf-a; hf=0.05m; a=0.015m; h0=0.035m

?=1-?1-2* A0 ?=0.0294

?=1 - ?/2 ?=0.985s= M/ Rs* h0* ?; Rs=360MPa


As=0.978 cm2

Принимаем (согласно сортаменту) 29Ø3 Вр-I с шагом S=200 мм с пл. As=0.98 см². Арматуру перпендикулярного направления принимаем конструктивно: Ø3 Вр-I с шагом S=250 мм.


(см графеческая часть лист 1)


Проверка прочности нормального сечения:


X=Rs * As/Rb*?b2*bf=0.0024 м


2.8 Расчет ребристой плиты по второй группе предельных состояний


Расчет по образованию трещин, нормальных к продольной оси элемента.

Конструкция III - категории ?f=1 ?sp=1

Проверяется условие:


Mn<Mcrc= Rbtser* Wpl+ ?sp*P*(eop+r)


Mn - момент от внешних сил Mn=63.306 m*kN

Mcrc - момент, воспринимаемый сечением при образовании трещин

Rbtser=1.8MPa Wpl=0.048m P=115.645 kN eop=0. 0.182m


r = ?n*(Wred/Ared); ?n=1.6-?bp/Rbser

?bp= P11/ Ared+ P11* eop* y0/ Ired; ?bp=1.56Mpa


?n=0.166,=0.046m


Mcrc=117.36m*kN=63.306m*kN


Mn<Mcrc, трещины не образуются

3. Расчет колонны подвального этажа


.1 Сбор нагрузок на покрытие и перекрытие


Табл.3.1. Сбор нагрузок на 1м2 покрытия

Nп.п.НаименованиеНормативная нагр. кН/м2Коэффициент надежн. ?fРасчетная нагр кН/м21От рулонного покрытия в 3 слоя0,121,20,15От цементного выравнивающего слоя t=20 мм ?=20 кН/м30,41,10,44От утеплителя пенобетонные плиты b=120 мм ?=0,4кН/м30,481,20,58От пароизоляции в 1 слой0,041,20,048От плиты hred=0.1 м2,51,12,75Итого3,543,972Временная снеговая нагрузка (Sg)--1,8004в том числеснеговая длительно действующая (Sl)--0,9002Кратковременная--1,8004Полная расчетная--5,7704Длительно действующая--4,8702

Табл.3.2. Сбор нагрузок на 1м2 перекрытия

Nп.п.НаименованиеНормативная нагр. кН/мКоэффициент надежн. ?sРасчетная нагр кН/м1Конструкция пола0,1751,20,212Ребристая плита2,51,12,75Итого2,6752,963Временная полезная нагрузка (V)81,29,6в том числеКратковременная Vsh (30%)2,41,22,88Длительно действующая Vl (70%)5,61,26,72Полная10,67512,56в том числеДлительная8,2759,68Кратковременная2,42,88

.2 Сбор нагрузок на колонну


Аsup=B*L=6*6=36m2

l0=Hэт=3 m

Nпокр=q* Аsup; Nпокр=5,77*36=207.72kN

Nпокрl=ql* Аsup; Nпокрl=4,87*36=175.32kN

Nперек=qпsup; Nперек=12,56*36=452,16kN

Nперекl=qп* Аsup;


Nперекl=(6,72+2,96)*36=348,48kN

=Vcol*?*?f*?n; ?f=1.1 ?n=0.95

Vcol=b*h*lk; Vcol=0.35*0.35*18=2.21m3


Gcol=1.47*25*1.1*0.95=57.6kN


Gr= br*hr*Lr* ?*?f*?n

Gr=(0.35*0.35+0.09*0.35)*6*25*1.1*0.95=24.1kN

Определяется продольная сжимающая сила:

расчётная

= Nпокр+ Nперек*n+ Gcol*+ Gr*nr


N=207.72+452.16*5+57.6+24.1*6=2671kN

Длительная


Nl= Nпокрl+ Nперекl*n+ Gcol*+ Gr*nr


Nl=175.32+348,48*5+57.6+24.1*6=2119,92kN


3.3 Расчёт ствола колонны


Рисунок 3.1. Расчетная схема.Исходные данные:

Бетон В20, Rb = 14,5МПа; Rbt = 0,9МПа;

Е=27·103МПа;

Арматура АIV, Rs = 510МПа; Rsc=400МПа;

Сечение колонны 350×350 мм;

Высота этажа - Н=3 м;

Расчетная длина колонны - L0=H=3 м.

Ригель 350×650×5550 мм.


Проверяется условие: l0<20*hcol

l0 - расчетная длина колонны


hcol - высота сечения колонны

*hcol=8 m l0=3 m

Условие соблюдается, значит колонна рассчитывается как центрально загруженная. Сечение колонны армируется симметричной рабочей арматурой.

Принимается предварительно сечение колонны 350×350 mm


ea>1/600*l0; ea=0.5cma>1/30* hcol; ea=1.2cm


Принимается ea=1.2cm

Определяется гибкость ?= l0/ hcol ?=8,6

Определяется площадь поперечного сечения А=N/?*(Rb+?*Rsc)


? =0.02 Nl/N=0.79 ?=?sb=0.89 (СНиП 2.03.01-84, табл 26)

А=2671/0,89*(11,5*103+0,02*400*103)=1370 cm2

hcol=bcol=?A=37.01 cm

Принимается сечение колонны 400×400 mm

Вычисляется сечение рабочей сжатой арматуры:


(As+As1)=(N/ ?* Rsc) - A* Rb* ?b2/ Rsc ?b2=0.9

(As+As1)= 2671*10/0.89*400-1600*14.5*0.9/400=33.62cm2


По сортаменту принимается 4Ø22+4Ø25.

Astot=15,20+19,63=34,81 cm2


Проверяется условие:


?=?b+2*(?sb-?b)*?s??sb


?b=0.88


?s = Rsc* Astot/ Rb*A


?s=400*34.83/14.5*1600=0.6

?=0.88+2*(0.89-0.88)*0.6=0.89

Определяется фактический коэффициент армирования сечения колонны:

Проверяем условие:

+As1<A (на 5%).

?= (As+As1/A)*100%


?=32.19/1600*100%=2.18%<5% Условие выполняется


3.4 Определение усилия Q, действующего на консоль


Консоль рассчитывается на действие поперечной силы Q, передаваемой от сборного ригеля Q=q*l0/2, kN


q=qr+qпер

qr= br*hr* ?*?f*?n


qr=(0,4*0,35+0,14*0,35)*25*1,1*0,95=4.94kN/m


qпер=qп*bsup* ?f*?n


qпер=12,56*6*1,1*0,95=78.75kN/m=78.75+4.94=83.69kN/m=83.69*6/2=251.07 kN


3.5 Расчет консоли колонны


Материалы

Бетон - B25

Rb=14.5MPa Rsc=365MPa Rbt=0.9MPa



Расчет консоли выполняется по величине опорного давления ригеля Q. Определяется длина площадки передачи нагрузки ригеля на консоль:


lsup=Q/b* Rb


lsup=251.07/0.4*14.5*103=0.055m Принимается lcon=0.3m lsup=0.25m

Определяется расстояние от грани колонны до

точки приложения силы Q:


a= lcon - lsup/2


a=300-250/2=175mm

Вычисляется величина изгибающего момента в опорном сечении консоли (по грани колонны): M=Q*a

M=251.07 *0.175=43.94kN/m



Площадь сечения верхней продольной растянутой арматуры консоли подбирается по изгибающему моменту у грани колонны, увеличенному на 25%.


A0=1.25*M/ Rb*b*h02* ?b2; A0=0.0408

?=1-?1-2* A0; ?=0.042

?=(1- ? /2); ?=0.979s=1.25*M/ Rs* ? *h0; As=2.7 cm2


По сортаменту подбирается диаметр стержней и их количество.

ø14 A - III As=3.08 cm2

Поперечная арматура консоли конструируется следующим образом:

при h>2*a - в виде отогнутых стержней и горизонтальных хомутов по всей высоте колонны

h=0.6m

*a=0.52m

Хомуты принимаются из условия свариваемости ø4 A - I

Шаг хомутов:

Sw<h/4; Sw=0.6/4=0.15m


Sw<150

Принимается шаг хомутов Sw=150mm

Диаметр отогнутых стержней - не более 25 мм


As=Q*l/h0* Rsc


As=251.07 *30*103/57*365*100=3.02cm2

Принимаются отгибы A - III 2 ø14 As=3.08cm2

Проверка прочности бетона консоли у грани колонны по наклонной сжатой полосе между грузом и опорой:

Проверяется условие:


Q<0.8*Rb*b*lb*?w2*sin?


?w2=1+5*?*? - коэффициент, учитывающий влияние хомутов по высоте консоли.


? =Es/Eb Es=2/10-5MPa Eb=27.0/10-3MPa (Бетон В 20) ?=7.4

?=Asw/b*Sw


Asw=0.126cm2 - площадь сечения хомутов в одной плоскости

Sw - шаг хомутов

? =0.126*4/40*15=0.0008

?w2=1+5*7.4*0.0008=1.0296

Определяется lb - расчетная ширина наклонной сжатой полосы:


lb= lsup* sin?

? - Угол наклона расчетной сжатой полосы к горизонтали

<?<60

sin?=0.88

lb=0.25*0.88=0.221m


0.8*Rb*b*lb*?w2*sin?=0.8*14.5*1000*0.4*0.195*1.0296*0.88=742kN


Q=251.07 kN

.07 kN<742kN, где правая часть должна быть:


>2.5* Rbt*b*h0

<3.5* Rbt*b*h0


h0=0.57m


.5* Rbt*b*h0=2.5*1.05*1000*0.4*0.57=598.5kN

.5* Rbt*b*h0=3.5*1.05*1000*0.4*0.57=837.9kN


Рисунок3.1. Захват для монтажа колонн


598.5kN<742kN<837.9kN, условие выполняется.

Т.к. колонну поднимают специальным захватом, монтажное отверстие не требуется.

4. Расчет стыка ригеля с колонной

перекрытие консоль плита балочный

Для обеспечения неразрезности ригеля и пространственной жесткости здания стык ригеля с колонной выполняется жестким и рассчитывается на восприятие изгибающего момента.


.1 Определение усилий в стыке



Расчетное растягивающее усилие в стыке:


Nst=Mf/z


Mf - момент действующий в стыке ригеля с колонной (граневой момент);

z-плечо пары сил, равное расстоянию от центров тяжести верхней и нижней закладных деталей ригеля.

Расчетным на опоре является сечение ригеля по грани колонны. В этом сечении изгибающий момент (граневой).


Mf=M-Q*hcol/2


M - изгибающий момент по оси опоры

Q - поперечная сила со стороны пролёта

hcol - высота сечения колонны

Изгибающий момент по оси опоры определяется в зависимости от количества пролетов неразрезного ригеля.



Определим опорные моменты в точках «В» и «С».


Mb=-g*l2/9.5-v*l2/8.4c= - g*l2/12.7-v*l2/8.9=gпер+grig


grig=4.73 kN/m


g пер= g п*bsup


g пер=12,56*6=75.36 kN/m=75.36+4.73 =80.09 kN/m


v=v* bsup


v=9.6*6=57.6 kN/mb=-80.09 *62/9.5-57.6 *62/8.4=550.32 kN*mc=-80.09 *62/12.7-57.6*62/8.9=460 kN*m


M=Mmax=550.32 kN*m


Q=251.07 kNf=550.32 -251.07 *0.4/2= 500.12kN*m=0.6st=500.12/0.6=833.54 kN



4.2 Расчет сварных соединений


Площадь сечений стыковых стержней:

Принимаем для стыковых стержней арматуру класса А - ІVC


As= Nst/Rs


Rsc=510MPas=833.54 /510*1000=16.34 cm2

По сортаменту принимается 4Ø25, Аs=19.63cm2

Длина фланговых сварных швов: lw>5*d=5*25=125mm


? lw >1.3* Nst/Rwz*?wz* ?c*?z*hw

? lw >1.3* Nst/Rwf*?wf* ?c*?f*hw


где 1,3 - коэффициент условия работы шва с учетом пластических деформаций ригеля;

hw - высота шва, принимаемая не менее 0,25d=0,25·16=4 mm - принимается 10mm;

Rw - расчетное сопротивление сварного шва, принимаемого по табл. 56 [2], для электродов Э46: Rwf=200МПа, Rwz=164МПа

? lw =1.3*833.54 /164*1000*1*1*1*0.01=0.67m

? lw =1.3*833.54 /200*1000*1*1*1*0.01=0.54m

Принимается большее из полученных значений: ? lw=0.67m

Длина сварного шва:


lw=? lw/8+1cm


lw=67/8+1=8.38+1=9.38cm

Принимается lw=125 mm

Длина сварных швов, прикрепляющие нижние закладные детали ригеля к закладным деталям консолей колонн:


? lw =1.3*(Nst-F)/Rwf* ?c*?f*hw

F=Q*f - сила трения;


?f = 0,7 по табл. 34 [2];

f =0,15 - коэффициент трения стали по стали.

F=362.59*0.15=54.39kN

? lw=1.3*(833.54 -37.66)/0.7*0.01*200*1000=0.74m

Длина одного шва:


lw= ? lw/2+1cm=74/2+1=37cm


Принимается lw=350 mm

Площадь сечения стальных пластинок консоли и закладных деталей по низу ригеля:


A=Nst/Ry

Ry=215MPa - расчетное сопротивление стали растяжению.

A=833.54 /215*1000=38.77 cm2

Стык колонны выполняют на ванной сварке выпусков стержней с обетанированием, концы колонны усиливают поперечными сетками.

Конструирование стыка колонны с ригелем смотреть на листе.


5. Расчет прочности центрально-нагруженного фундамента под колонну


.1 Расчет прочности тела фундамента


Исходные материалы: Бетон кл. В15: Rbt=0.75МПа.

По величине продольной силы Ncolser (величина продольной силы по 2 гр. предельных состояний (усилия в уровне нормативного)), определяется необходимая площадь подошвы фундамента:



?f=1


A=a*b= Ncolser/(R-?m*H1)

R=0.360 MPa - расчетное сопротивление грунтов основания


Ncolser= Ncol/ ?fm=2671/1,15=2322.4kN


R=0.360 МПа - расчетное сопротивление грунтов основания,

?m=20 кН/м3 - средняя плотность материала фундамента и грунта на его ступенях,

H1=0.6m - глубина заложения подошвы фундамента.

A=2322.4/(360-20*0.6)=2160.9/348=6.7 m2

Размеры сторон подошвы фундамента axb, как правило, принимаются квадратными и кратны 30 см.


a=b=?A=2.57m a=b=2.7m A=a*b=2.7*2.7=7.29m2


Определяется отпор грунта без учета массы фундамента и грунта на его ступенях: (Ncolser - расчетная продавливающая сила (1 гр.пред. сост.))


P= Ncolser/A


P=2322.4/7.29=318.6kN/m2

Глубина заложения фундамента определяется из условия его прочности на продавливание. Рабочая высота фундамента с квадратной подошвой составит:


h0=1/2*(? Ncolser/Rbt+P) - hcol/2


h0=1/2*(?2322.4/0.75*1000+318.6) - 0.4/2=0.737-0.2=0.537m

Полная высота фундамента: hfun= h0+a=0.537+0.035=0.572

a=35mm - при наличии подготовки под фундамент.

Выполняется проверка высоты фундамента по конструктивным требованиям обеспечения жесткого защемления колонны в фундаменте и достаточной анкеровки продольной (гибкой) арматуры. Для этого проверяется глубина стакана фундамента hsoc по условиям:


hsoc>(1÷1.5)* hcol+0.05m=1.5*0.4+0.05=0.65m

hsoc>lan+0.05m=0.75+0.05=0.8m


lan - длина анкеровки арматуры в стакане фундамента,

lan=(20÷30)*d=20*0.025=0.5m

Высота фундамента: hfun= hcos+0.2m

hfun= 0.5+0.2=0.7m

Окончательно высота фундамента принимается большей из полученных значений кратно 300 мм.

hfun=0.9m h0=0.9-0.035=0.865m

При 450mm< hfun ? 900mm - фундамент выполняется двухступенчатым.


.2 Проверка на продавливание


Продавливающая сила определяется на уровне верха фундамента за вычетом отпора грунта, распределенного по площади нижнего основания пирамиды продавливания из выражения:


F= Ncolser-P*(hcol+2*h0)2


F=2322.4-318.6*(0.4+2*0. 865)2=1225kN

Проверяется условие: F? Rbt*Um*h0

Um - среднее арифметическое между периметрами верхнего и нижнего оснований пирамиды продавливания,

Um=4*(hcol+ h0)=4*(0.4+0. 865)= 5.06m

Rbt*Um*h0=0.75*1000*5.06*0.865=3282kN - условие выполняется.


Расчетная высота нижней ступени определяется из условия работы по поперечной силе без поперечной арматуры.

Расчетная поперечная сила (от внешней нагрузки):


Q=P*C


где, l - длина консоли нижней ступени,

C - длина проекции опасного наклонного сечения,

C=h01=0.3-0.035=0.265m

Q=318.6*0.265=84.42kN

Расчетная высота нижней ступени определяется из условия:


Q?1.5*Rbt*b* h012/C

.5*Rbt*b* h012/C=1.5*750*2.7*0.2652/0.265=805kN


При этом должны выполняться условия:


2.5*Rbt*b* h01?1.5*Rbt*b* h012/C?0.6* Rbt*b* h01

.5*Rbt*b* h01=2.5*750*2.7*0.265=1342kN

.6* Rbt*b* h01=0.6*750*3*0.265=321.96kN


Условия обеспечиваются.


.3 Расчет армирования фундамента


Расчетная схема - защемленная консоль. Консоли фундамента работают подобно изгибаемым консолям (M и Q от отпора грунта), заделанным в массив фундамента, их рассчитывают по нормальным сечениям: 1-1, 2-2.

Армирование фундамента осуществляется сеткой из арматуры кл. А-III, min d=12 мм Rs=365MPa.

Изгибающие моменты в сечениях 1-1, 2-2 как для консольных балок равны:


M1-1=0.125*P*(a-hcol)2*b


M1-1=0.125*318.6*(2.7-0.4)2*1=210.65kN*m


M2-2=0.125*P*(a-a1)2*b


a1=1.8m


M2-2=0.125*240.1*(3-2.1)2*1=32.26 kN*m


Расчетная площадь рабочей арматуры на всю ширину фундамента из условия, что


z=0.9*h0=0.9*0.865=0.779m

As1= M1-1/(0.9* h0*Rs)


As1=210.65/0.9*0.865*365*1000=210.65/284152.5=7.41cm2


As2= M2-2/(0.9* h0*Rs)


As2=32.26 /0.9*0.865*365*1000=32.26 /284152.5=1.32cm2

Конструирование сетки выполняется по большему значению As=7.41cm2.

Шаг принимается равным 200 мм симметричным в обоих направлениях, принимается 5ø14 A-III As=7.69cm2.

C7 14 A-III -200 3000×3000 75

A-III -200 75

При толщине стенки стакана по верху более 200 мм и более 0.75 высоты верхней ступени фундамента (300 мм), стенки стакана не армируются.

Конструирование фундамента смотреть на листе.


6. Расчет простенка первого этажа


6.1 Определение нагрузки на простенок


Простенок выполнен из красного кирпича пластичного формования.

Выбор материала:

Кирпич: M200

Раствор: M75



Грузовая площадь на кирпичный простенок.

Asup=6*3=18m2

Продольная сила от покрытия:


Nпокр=qпокр* Asup


Nпокр1=4.87*18=87.66kN

Продольная сила от одного перекрытия:


Nпер=qпер* Asup

Nпер1=12.56*18=226.08kN

Вес погонного метра ригеля:


Grig=brig*hrig*?*?f* ?m


Grig=(0.4*0.35+0.14*0.35)*25*1.1*0.95=4.02kN

Вес стены:


Gстен=(Bo*Hзд+ho*bo)*?*hстен* ?f* ?m


Gстен=(3*3-1.8*1.5)*18*0.64*1.1*0.95=75.84kN

где, hстен=0.64m - толщина стены,

?=18kN/m3 - плотность кирпичной кладки.


Nпокр= Nпокр1+ Grig*(l/2)


l=6m - пролет ригеля

Nпокр=87.66+4.02*3=99.73kN


Nпер= Nпер1+ Grig*(l/2)


Nпер=226.08+4.02*3=238.15kN

Вес парапета:


Gпар=bsup*Hпар*?*hстен* ?f* ?m


Gпар=6*1*0.64*18*1.1*0.95=72.23kN

Вес участка стены под перекрытием первого этажа:

Gстен1=0.6*0.64*3*18*1.1*0.95=19.69kN

Определим продольную силу, действующую на простенок:


N= Nпокр+ Nпер*5 Gстен+ Gстен1+ Gпар


N=99.73+238.15*5+99.67+19.69+72.23=1458.24kN


Вертикальный разрез

Грузовая площадь стены одного этажа.


Расчетная схема простенка


6.2 Определение несущей способности простенка


Определяется эксцентриситет приложения нагрузки N1.=hстен/2 - er при e011<7cm=25/3=8.3cm



Принимается e011=7cm



e01=64/2-7=25cm=0.25m


N1= Nпер=238.15kNI-I= N1* e01=238.15*0.25=59.54kN*m


Момент МII-II определим из пропорции: 2.4/3= МII-II/ M1I-I

МII-II=2.4*59.54/3=47.63kN*m

Эксцентриситет его, определится из формулы:

= МII-II/N=47.63/1458.24=0.0327m


Условие прочности простенка:

<mq*?1*Ac*R*?



где ?=1000 - упругая характеристика (СНиП II-22-81 табл. 15)=2.5MPa - расчетное сопротивление кладки (СНиП II-22-81 табл. 2)=1, если hстен>30cm=h-2*eo=0.64-2*0.0327=0.57cm


?1=Hэт/ hстен=3/0.64=4.69

?2=Hэт/ hс=3/0.57=5.26


?1 - коэффициент продольного изгиба


?1= ?+ ?c/2


?=0.975 ?c=0.967 (СНиП II-22-81 табл. 18)

?1=0.975+0.967/2=0.9708


? =1+(eo/ hстен)=1+(0.0327/0.64)=1.05 - коэффициент учитывающий поддерживающее влияние бетона.= hстен*bsup - площадь простенка


A=0.64*1.2=0.768m2


Ac=A*(1-2*eo/ hстен)=0.768*(1-2*0.056/0.64)=0.6895 m2*?1*Ac*R*?=1*0.9708*0.6895*2500*1.0511=1758.92kN


N=1458.24kN<1758.92kN, условие выполнено. Простенок не армируется.


Литература


1. СНиП 2.03.01-84* «Бетонные и железобетонные конструкции» - М.: ЦИТП Госстроя СССР, 1985.

. СНиП ІІ-23-81 «Стальные конструкции. Нормы проектирования.» - М.: ЦИТП Госстроя СССР, 1982.

. СНиП П-22-81 «Каменные и армокаменные конструкции». - М.: Стройиздат, 1983.

.СНиП 2.01.07-85* «Нагрузки и воздействия» - М.: ЦИТП Госстроя СССР, 2003.

. ГОСТ Р21.1501-92 «Правила выполнения архитектурно - строительных чертежей». - М.: Издательство стандартов, 1993.

. Байков В.Н., Сигалов Э.Е. «Железобетонные конструкции» - М.: Стройиздат, 1991.

. Бондаренко В.М., Суворкин Д.Г. «Железобетонные и каменные конструкции: Учеб. для студентов вузов по спец. «Пром. и гражд. стр.-во»». - М.: Высшая школа, 1987.

. Вахненко П.Ф. «Каменные и армокаменные конструкции». - К.: Будивэльнык, 1990.

. Попов Н.Н., Забегаев А.В. «Проектирование и расчет железобетонных и каменных конструкций» - М.: Высшая школа, 1989.

. «Пособие по проектированию предварительно напряженных железобетонных конструкций из тяжелых и легких бетонов (к СНиП 2.03.01-84*)» - М.: ЦИТП Госстроя СССР, 1988.

. «Проектирование железобетонных конструкций».: Справочное пособие/ Под ред. Голышева А.Б. - К.: Будивэльнык, 1985.


Теги: Расчет перекрытия  Курсовая работа (теория)  Строительство
Просмотров: 32587
Найти в Wikkipedia статьи с фразой: Расчет перекрытия
Назад