Методы исследования в гистологии

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФГБОУ ВПО «САХАЛИНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

ЕСТЕСТВЕННОНАУЧНЫЙ ФАКУЛЬТЕТ

КАФЕДРА ЭКОЛОГИИ И ПРИРОДОПОЛЬЗОВАНИЯ


КОНТРОЛЬНАЯ РАБОТА

по дисциплине «Гистология и эмбриология рыб

на тему «Методы исследования в гистологии»


Студент 2 курса

Терехов Степан Сергеевич

Научный руководитель,

ст. преподаватель кафедры экологии и природопользования

А.В. Бойко


Южно-Сахалинск


Введение


Гистология - наука об особенностях организации, функций и развития тканей и тканевом строении органов. Основным объектом изучения гистологии служат ткани, которые представляют собой филогенетически сложившиеся, топографически и функционально связанные клеточные системы и их производные, из которых образованы органы. Для того что бы понять как это всё устроено и работает, человечеству понадобилось пройти через многое, начиная с линз Антони Ванн Левенгука, когда было положено начало изучению всего живого, не видимое ранее. К современным же методам изучения, относят основной, микроскопирование.

Цель работы: Рассмотреть методы исследования в гистологии, научиться работать с гистологическими препаратами и понимать сам процесс изучения тканей различными способами микроскопирования.


1. Методы исследования в гистологии, основа


В зависимости от объекта изучения гистологию подразделяют на нормальную (изучает ткани здорового организма) и патологическую (патогистологию), которая исследует изменения тканей при заболеваниях и повреждениях (ее обычно рассматривают как раздел патологической анатомии). В силу специфики объекта и методов исследования выделяют нейрогистологию, а также учение о крови и кроветворении, ставшее теоретической основой гематологии. Кроме того, различают ряд направлений в гистологии - описательную гистологию (описание тканей), сравнительную гистологию (сравнение тканей различных видов животных), эволюционную гистологию (закономерности развития тканей в филогенезе), экологическую гистологию (изучает ткани в связи с воздействием условий обитания), экспериментальную гистологию. В гистологии используют многочисленные методы исследования - микроскопию, экспериментальный, тканевых культур (Афанасьев 1989).

Основной предмет изучения гистологии - комплексы клеток, составляющие ткани, в их взаимодействии друг с другом и с промежуточными средами. Являясь частью морфологии, гистология тесно связана с цитологией, анатомией, эмбриологией. Методологическую основу гистологии составляют клеточная теория и эволюционное учение. Гистологию принято разделять на общую (изучает общие закономерности развития, строения и функции тканей) и частную (изучает микроскопическое строение отдельных органов и систем организма). Специальными разделами гистологии являются гистохимия (химия тканей) и гистофизиология (механизмы деятельности тканей) (Юшканцева 2006).


2. Методы исследования


Методы исследования в гистологии включают приготовление гистологических препаратов с последующим их изучением с помощью светового или электронного микроскопа. Гистологические препараты представляют собой мазки, отпечатки органов, тонкие срезы кусочков органов, возможно, окрашенные специальным красителем, помещенные на предметное стекло микроскопа, заключенные в консервирующую среду и покрытые покровным стеклом.

В современной гистологии, цитологии и эмбриологии применяются разнообразные методы исследования, позволяющие всесторонне изучать процессы развития, строения и функции клеток, тканей и органов.

Главными этапами гистологического анализа являются выбор объекта исследования, подготовка его для изучения в микроскопе, применение методов микроскопирования, а также качественный и количественный анализ изображений.

Объектами исследования служат живые и мертвые (фиксированные) клетки и ткани, и их изображения, полученные в световых и электронных микроскопах.

Основным объектом исследования являются гистологические препараты, приготовленные из фиксированных структур. Препарат может представлять собой мазок(например, мазок крови, костного мозга, слюны, спинномозговой жидкости и др.),отпечаток (например, селезенки, тимуса, печени), пленку из ткани (например, соединительной или брюшины, плевры, мягкой мозговой оболочки), тонкий срез. Наиболее часто для изучения используется срез ткани или органа. Гистологические препараты могут изучаться без специальной обработки. Например, приготовленный мазок крови, отпечаток, пленка или срез органа могут сразу рассматриваться под микроскопом. Но вследствие того, что структуры имеют слабый контраст, они плохо выявляются в обычном световом микроскопе и требуется использование специальных микроскопов (фазово-контрастные и др.). Поэтому чаще применяют специально обработанные препараты: фиксированные, заключенные в твердую среду и окрашенные (Юрина 1999).

Процесс изготовления гистологического препарата для световой и электронной микроскопии включает следующие основные этапы:

взятие материала и его фиксация,

уплотнение материала,

приготовление срезов,

окрашивание или контрастирование срезов.

Для световой микроскопии необходим еще один этап - заключение срезов в бальзам или другие прозрачные среды.

Фиксация обеспечивает предотвращение процессов разложения, что способствует сохранению целостности структур. Это достигается тем, что взятый из органа маленький образец либо погружают в фиксатор (спирт, формалин, растворы солей тяжелых металлов, осмиевая кислота, специальные фиксирующие смеси), либо подвергают термической обработке. Под действием фиксатора в тканях и органах происходят сложные физико-химические изменения. Наиболее существенным из них является процесс необратимой коагуляции белков, вследствие которого жизнедеятельность прекращается, а структуры становятся мертвыми, фиксированными. Фиксация приводит к уплотнению и уменьшению объема кусочков, а также к улучшению последующей окраски клеток и тканей.

Уплотнение материала, необходимое для приготовления срезов, производится путем пропитывания предварительно обезвоженного материала парафином, целлоидином, органическими смолами. Более быстрое уплотнение достигается применением метода замораживания кусочков, например, в жидкой углекислоте.

Приготовление срезов происходит на специальных приборах - микротомах (для световой микроскопии) и ультрамикротомах (для электронной микроскопии).

Окрашивание срезов (в световой микроскопии) или напыление их солями металлов (в электронной микроскопии) применяют для увеличения контрастности изображения отдельных структур при рассматривании их в микроскопе. Методы окраски гистологических структур очень разнообразны и выбираются в зависимости от задач исследования.

Гистологические красители (по химической природе) подразделяют на кислые, основные и нейтральные. В качестве примера можно привести наиболее употребительный краситель гематоксилин, который окрашивает ядра клеток в фиолетовый цвет, и кислый краситель - эозин, окрашивающий цитоплазму в розово-желтый цвет. Избирательное сродство структур к определенным красителям обусловлено их химическим составом и физическими свойствами. Структуры, хорошо окрашивающиеся кислыми красителями, называются оксифильными, а окрашивающиеся основными - базофильными. Например, цитоплазма клеток чаще всего окрашивается оксифильно, а ядра клеток - окрашиваются базофильно.

Структуры, воспринимающие как кислые, так и основные красители, являются нейтрофильными (гетерофильными). Окрашенные препараты обычно обезвоживают в спиртах возрастающей крепости и просветляют в ксилоле, бензоле, толуоле или некоторых маслах. Для длительного сохранения обезвоженный гистологический срез заключают между предметным и покровным стеклами в канадский бальзам или другие вещества. Готовый гистологический препарат может быть использован для изучения под микроскопом в течение многих лет (Юрина, Радостина 1999).

В электронной микроскопии срезы, полученные на ультрамикротоме, помещают на специальные сетки, контрастируют солями урана, свинца и других металлов, после чего просматривают в микроскопе и фотографируют. Полученные микрофотографии служат объектом изучения наряду с гистологическими препаратами.


3. Методы микроскопирования гистологических препаратов


Микроскопия может быть световая (с использованием светового микроскопа) иэлектронная (с использованием электронного микроскопа). Световая микроскопия может осуществляться в проходящем свете, когда свет проходит через тонкий прозрачный гистологический препарат, или же в отраженном свете, когда исследуют, например, толстый или непрозрачный объект. Аналогичным образом, электронная микроскопия может быть трансмиссионной, когда пучок электронов проходит сквозь изучаемый ультратонкий срез, или же растровой, или сканирующей, когда пучок электронов отражается от поверхности исследуемого объекта. В первом случае электронный микроскоп называется трансмиссионным (ТЭМ), а во втором - сканирующим (СЭМ).


.1 Световая микроскопия


Микроскопирование - основной метод изучения препаратов - используется в биологии уже более 300 лет. Современные микроскопы представляют собой разнообразные сложные оптические системы, обладающие высокой разрешающей способностью и позволяющие изучать очень тонкие детали строения клеток и тканей. Размер самой маленькой структуры, которую можно видеть в микроскопе, определяется наименьшим разрешаемым расстоянием (d0). В основном оно зависит от длины световой волны ?, и эта зависимость приближенно выражается формулой d0 = ? / 2. Таким образом, чем меньше длина световой волны, тем меньше разрешаемое расстояние и тем меньшие по размерам структуры можно видеть в препарате (т.е. выше «разрешение» микроскопа). Понятие «увеличение микроскопа» относится к его оптической системе и выражается в произведении увеличений объектива и окуляра. Однако «разрешение» микроскопа зависит от характеристик объектива и не зависит от окуляра.

Для изучения гистологических препаратов чаще применяют обычные световые микроскопы различных марок, когда в качестве источника освещения используют естественный или искусственный свет. Минимальная длина волны видимой части спектра света соответствует примерно 0,4 мкм (фиолетовый спектр). Следовательно, для обычного светового микроскопа разрешаемое расстояние равно приблизительно 0,2 мкм, а общее увеличение (произведение увеличения объектива на увеличение окуляра) достигает 2000 раз.

Единицы измерения, используемые в гистологии: Для измерения структур в световой микроскопии используются в основном микрометры: 1 мкм составляет 0,001 мм; в электронной микроскопии используются нанометры: 1 нм составляет 0,001 мкм (Юшканцева 2006)


.2 Ультрафиолетовая микроскопия


Это разновидность световой микроскопии. В ультрафиолетовом микроскопе используют более короткие ультрафиолетовые лучи с длиной волны около 0,2 мкм. Разрешаемое расстояние здесь составляет приблизительно 0,1 мкм. Полученное в ультрафиолетовых лучах невидимое глазом изображение преобразуется в видимое с помощью регистрации на фотопластинке или путем применения специальных устройств (т.к. люминесцентный экран, или электронно-оптический преобразователь) (Юрина 1999)


.3 Флюоресцентная (люминесцентная) микроскопия


Явления флюоресценции заключаются в том, что атомы и молекулы ряда веществ, поглощая коротковолновые лучи, переходят в возбужденное состояние. Обратный переход из возбужденного состояния в нормальное происходит с испусканием света, но с другой, большей длиной волны. В флюоресцентном микроскопе в качестве источников света для возбуждения флюоресценции применяют ртутные или ксеноновые лампы сверхвысокого давления, обладающие высокой яркостью в области спектра 0,25-0,4 мкм (ближние ультрафиолетовые лучи) и 0,4-0,5 мкм (сине-фиолетовые лучи). Длина световой волны вызванной флюоресценции всегда больше длины волны возбуждающего света, поэтому их разделяют с помощью светофильтров и изучают изображение объекта только в свете флюоресценции. Различают собственную, или первичную, и наведенную, или вторичную, флюоресценцию. Любая клетка живого организма обладает собственной флюоресценцией, однако она часто бывает чрезвычайно слабой. Вторичная флюоресценция возникает при обработке препаратов специальными красителями - флюорохромами <#"justify">Артишевский, А. А. Гистология с техникой гистологических

исследований (1999)

Антипчук, Ю. П. Гистология с основами эмбриологии (1983)

Афанасьев Ю.И., Юрина Н.А. - Гистология, цитология и эмбриология (1989) "Медицина"

Афанасьев Ю.И., Юрина Н.А. - Гистология, цитология и эмбриология (2002) "Медицина"

Быков В.Л. Частная гистология человека "Сотис" 1999

Заварзин А.А., Строева О.Г. - Сравнительная гистология. Учебник "СпБ" 2000

Кузнецов С.Л., Мушкамбаров Н.Н. - Атлас по гистологии, цитологии и эмбриологии "МИА" 2002

Рябов, К. П. Гистология с основами эмбриологии: учебное пособие (1990)

Улумбеков Э.Г., Челышев Ю.А. - Гистология. Учебник для ВУЗов (1997) "Геотар" 1997

Челышев Ю.А. - Графические тесты по гистологии, цитологии, эмбриологии "КГМУ" 2000

Юрина Н.А., Радостина А.И. - Практикум по гистологии, цитологии и эмбриологии "УДН" 1999

Юшканцева С.И., Быков В.Л. - Гистология, цитология и эмбриология. Краткий атлас "П-2" 2006


Теги: Методы исследования в гистологии  Курсовая работа (теория)  Биология
Просмотров: 17224
Найти в Wikkipedia статьи с фразой: Методы исследования в гистологии
Назад