Гистологические методы исследования


Реферат

Гистологические методы исследования

гистологический срез электронная микроскопия клетка


Гистохимические методы

Методы идентификации химических веществ в гистологических срезах. Составной частью Г. м. и. являются цитохимические методы, выявляющие химические вещества в клетках приготовленных мазков и отпечатков. В основе гистохимического исследования лежит соединение принципов и методов химического анализа с принципами и методами морфологического изучения клеток и тканей, используемыми в цитологии и гистологии. Благодаря этому обеспечиваются существенные преимущества в изучении морфофункциональной организации растительных и животных тканей, т.к. выявленное химическое вещество можно связать с определенной тканевой или клеточной структурой, т.е. установить его локализацию. Гистохимические методы находят широкое применение в гистологии, цитологии, эмбриологии, патологической анатомии, экспериментальной и клинической морфологии. С помощью разнообразных методов современной гистохимии можно судить об особенностях функционирования различных тканевых и клеточных структур, определять характер и темп обменных процессов в клетках и тканях, обнаруживать ранние проявления заболеваний.

Непременным условием проведения гистохимического исследования, особенно при выявлении ферментов и других веществ белковой природы, является сохранение структуры тканей и клеток в состоянии, близком тому, какое имеется в живом организме. Это достигается получением срезов свежезамороженных тканей с помощью ножа глубокого охлаждения и криостата, а также использованием лиофильной сушки. Некоторые гистохимические исследования., например выявление углеводных соединений, можно проводить после специальной фиксации тканей и заливки в парафин.

Многие гистохимические исследования являются групповыми, т.е. служат для обнаружения соединений с одинаковыми или близкими свойствами. Другие Г. м. и. строго специфичны и применяются для выявления определенных веществ. Для обнаружения углеводных соединений широко используются методы, основанные на метахромазии - свойстве клеток и тканей окрашиваться в цвет, отличающийся от цвета красителя. Метахромазия обусловлена полимеризацией молекул красителя под влиянием свободных отрицательных зарядов гликозаминогликанов (кислых муко-полисахаридов), присутствующих в ткани.

К высокоспецифичным относятся гистохимические методы выявления ферментов. В их основу положено воздействие фермента на специфический субстрат в присутствии другого вещества, называемого захватывающим агентом (акцептором). Соединяясь с первичным продуктом ферментативной реакции, акцептор образует нерастворимый, обычно окрашенный, осадок - конечный продукт реакции, который маркирует место действия фермента. В качестве акцепторов применяют ионы металлов, соли диазония и другие соединения. Ионы металлов обладают высокой электронной плотностью, поэтому могут быть обнаружены при электронно-микроскопическом исследовании. Это свойство используется в электронной гистохимии. Для определения в тканевом срезе дегидрогеназ применяют соли тетразолия, которые в присутствии специфического субстрата восстанавливаются с превращением в нерастворимые окрашенные продукты - формазаны. Оценка результатов гистохимических реакций, основанная на избирательном окрашивании структур или выпадении окрашенного продукта реакции, может быть не только качественной, но и количественной при использовании цито-спектрофотометрии. Возможна также визуальная полуколичественная оценка интенсивности окрашивания в баллах.


Электронная микроскопия


Электронная микроскопия - совокупность методов исследования с помощью электронных микроскопов микроструктур тел, их локального состава и локализованных на поверхностях или в микрообъемах тел электрических и магнитных полей.

На первом этапе электронная микроскопия применялась в основном для наблюдения биологических объектов, причем для интерпретации снимков использовался лишь адсорбционный контраст. Однако появление метода реплик - отпечатков, сделанных с поверхности , и особенно декорирование их металлами (1940-е -1950-е г.г. ) позво-лило успешно изучать неорганические материалы - сколы и изломы кристаллов. Примерно с начала 1950-х годов начинаются интенсивные попытки исследования тонких фольг материалов на просвет. Это стало возможным в результате существенного повышения, до 100кВ, ускоряющего напряжения в электронных микроскопах. С этого периода начинается бурное развитие электронно-микроскопической техники, электронная микроскопия находит все более широкое применение в физическом материаловедении. Одной из важнейших причин этого, по-видимому, является возможность наблюдать в одном эксперименте, как изображение объекта в реальном пространстве, так и его дифракционную картину. Поэтому электронная микроскопия является наиболее подходящим методом исследования структур сложных кристаллических объектов.

Электронную микроскопию можно разделить на 3 группы:

- Просвечивающая электронная микроскопия (Transmission electron microscopy)

ПЭМ является наиболее универсальным классическим методом исследования структурных дефектов кристаллов, используется непосредственно для анализа морфологических особенностей, ориентации дефектов относительно решетки матрицы, определения их размеров. Для работы на просвечивающих электронных микроскопах требуются специально приготовленные тонкие препараты - реплики или фольги, прозрачные для электронов. Наиболее распространены электронные микроскопы с ускоряющим напряжением 100 и 200, 300 и 400 кВ, при этом исследуемые образцы должны иметь различную толщину в зависимости от величины ускоряющего напряжения (для 100 кВ в случае кремния оптимальная толщина 0,3-0,4 мкм, для 200 кВ - от 0,6-0,8мкм до 1мкм). Реплики используются для наблюдения микрорельефа, фактуры поверхности исследуемого образца. Сама реплика - это тонкая пленка какого-то вещества, на которой получают отпечаток микрорельефа поверхности. Это осуществляется, например, путем напыления угольной пленки или нанесения пленки лака или желатина. Метод реплик позволяет получать информацию о структуре поверхности образцов. Фольги - тонкие пленки, которые получают из массивных образцов, причем утонение образца необходимо вести таким образом, чтобы не внести в исследуемую область дополнительных нарушений. Утоненный образец, как и снятую реплику, помещают на специальную сетку с крупными отверстиями и размещают в колонне микроскопа. Именно на фольгах ведутся исследования дефектообразования в кристаллах.

Длина волны электронов с энергией 100 кэВ примерно равна 0,004 нм, а разрешающая способность обычного просвечивающего электронного микроскопа составляет 0,15 нм. В дефектной области наблюдается изменение интенсивности контраста, поскольку в области дефекта или искажена решетка, или наличествует поле упругих напряжений вокруг дислокаций и выделений. При малой деформации решетки матрицы дефект может не выявляться. Кроме того, поскольку просматривается маленький участок при наблюдении дефектов с плотностью менее 108см3, для обнаружения дефекта требуется просмотр большого количества фольг.

Просвечивающая электронная микроскопия высокого разрешения

ВРЭМ практически новый метод исследования, позволяет наблюдать непосредственно кристаллическую решетку материала - получать изображение отдельных плоскостей кристаллической решетки. Наименьшее межплоскостное расстояние, которое удалось разрешить с помощью электронной микроскопии высокого разрешения, -0,1-0,2 нм. Особенностью ВРЭМ является использование специальной оптики нового поколения, а определяющим при формировании изображения является не дифракционный, а абсорбционный контраст.

- Растровая электронная микроскопия

Использование растровой развертки электронного луча по поверхности образца является одним из способов автоматизации измерений. По своим возможностям РЭМ является продолжением оптической микроскопии, расширяющей ее возможности в исследовании топологии поверхностей кристаллических материалов. Разрешение наиболее распространенных РЭМ достигает 5-10 нм при недостижимой для других видов микроскопов глубине резкости 0,6-0,8 мм, причем при изучении топологии поверхности вполне достаточно использование низковольтных РЭМ с диаметром пучка электронов 10 мкм. Обычно используют пучок электронов с энергией 10-30 кэВ, хотя в отдельных случаях могут использоваться электроны с энергией в несколько сотен эВ. В РЭМ изображение объекта формируется последовательно по точкам и является результатом взаимодействия электронного пучка (зонда) с поверхностью образца. Каждая точка образца последовательно облучается сфокусированным электронным пучком, который перемещается по исследуемой поверхности подобно сканированию электронного луча в телевизионных системах. При взаимодействии электронов зонда с веществом возникают ответные сигналы различной физической природы, которые используются для синхронного построения изображения на экране монитора. Для формирования изображения не используется электронно-оптическая система, изменение масштабов изображения осуществляется радиотехническими средствами. Поэтому растровые электронные микроскопы принципиально отличаются от микроскопов, как дифракционных приборов, в обычном понимании этого термина. По существу РЭМ - это телевизионный микроскоп.

Одним из существенных достоинств РЭМ является возможность в целом ряде случаев проводить исследования образцов практически без предварительной подготовки поверхности. Толщина образцов для РЭМ не имеет определяющего значения. Образцы могут иметь размеры порядка нескольких десятков мм, и ограничиваются только конструктивными возможностями держателя. Область применения методов РЭМ чрезвычайно широка - исследование топографии поверхности, приповерхностных структурных дефектов, электрически активных дефектов, электрических и магнитных доменов, определение атомного состава поверхности.


Ультрафиолетовая микроскопия


Ультрафиолетовая микроскопия - микроскопия при которой объект освещают ультрафиолетовыми лучами, а его видимое изображение получают с помощью люминесцентного экрана или посредством микрофотографии; применяется для повышения контрастности изображения, особенно внутриклеточных структур.

Метод наблюдения в ультрафиолетовых (УФ) лучах позволяет увеличить предель-ную разрешающую способность микроскопа, т. е. понизить его предельное разреше-ние, которое зависит от длины волны ? применяемого излучения (для используемых в микроскопии УФ лучей ? = 400-250 нм, тогда как для видимого света ? = 700-400 нм). Но главным образом этот метод расширяет возможности микроскопических ис-следований за счёт того, что частицы многих веществ, прозрачные в видимом свете, сильно поглощают УФ излучение определённых длин волн и, следовательно, легко различимы в УФ изображениях. Характерными спектрами поглощения в УФ области обладает, например, ряд веществ, содержащихся в растительных и животных клетках (Пуриновые основания, пиримидиновые основания, большинство витаминов (См. Витамины), ароматические Аминокислоты, некоторые Липиды, Тироксин и др.); это обусловило широкое применение УФ микроскопии в качестве одного из методов цитохимического анализа.

Ультрафиолетовые лучи невидимы для человеческого глаза. Поэтому изображения в УФ микроскопии регистрируют либо фотографически, либо с помощью электроннооптического преобразователя или люминесцирующего экрана. Распространён следующий способ цветового представления таких изображений. Препарат фотографируется в трёх длинах волн УФ области спектра; каждый из полученных негативов освещается видимым светом определённого цвета (например, синим, зелёным и красным), и все они одновременно проектируются на один экран. В результате на экране создаётся цветное изображение объекта в условных цветах, зависящих от поглощающей способности препарата в ультрафиолете.


Люминесцентная микроскопия


Метод исследования в свете люминесценции (люминесцентная микроскопия, или флуоресцентная микроскопия) заключается в наблюдении под микроскопом зелено-оранжевого свечения микрообъектов, которое возникает при их освещении сине-фиолетовым светом или не видимыми глазом ультрафиолетовыми лучами. При этом методе в оптическую схему микроскопа вводятся два Светофильтра. Первый из них помещают перед конденсором; он пропускает от источника-осветителя излучение только тех длин волн, которые возбуждают люминесценцию либо самого объекта (собственная люминесценция), либо специальных красителей, введённых в препарат и поглощённых его частицами (вторичная люминесценция). Второй светофильтр, установленный после объектива, пропускает к глазу наблюдателя (или на фоточувствительный слой) только свет люминесценции. В люминесцентной микроскопии используют как освещение препаратов сверху (через объектив, который в этом случае служит и конденсором), так и снизу, через обычный конденсор. Наблюдение при освещении сверху иногда называют «люминесцентной микроскопией в отражённом свете» (этот термин условен - возбуждение свечения препарата не является простым отражением света); его часто сочетают с наблюдением по фазово-контрастному методу в проходящем свете.

Метод широко применяется в микробиологии, вирусологии, гистологии, цитологии, в пищевой промышленности, при исследовании почв, в микрохимическом анализе, в дефектоскопии. Обилие и разнообразие применений связаны с чрезвычайно высокой цветовой чувствительностью глаза и высокой контрастностью изображения самосветящегося объекта на тёмном нелюминесцирующем фоне, а также ценностью информации о составе и свойствах исследуемых веществ, которую можно получить, зная интенсивность и спектральный состав их люминесцентного излучения.


Фазово-контрастная микроскопия


Метод фазового контраста служит для получения изображений прозрачных и бесцветных объектов, невидимых при наблюдении по методу светлого поля. К числу таких объектов относятся, например, живые неокрашенные животные ткани. Метод основан на том, что даже при очень малых различиях в показателях преломления разных элементов препарата световая волна, проходящая через них, претерпевает разные изменения по фазе (приобретает т. н. фазовый рельеф). Эти фазовые измене-ния, не воспринимаемые непосредственно ни глазом, ни фотопластинкой, с помощью специального оптического устройства преобразуются в изменения амплитуды свето-вой волны, т. е. в изменения яркости («амплитудный рельеф»), которые уже различи-мы глазом или фиксируются на фоточувствительном слое. Другими словами, в полу-чаемом видимом изображении распределение яркостей (амплитуд) воспроизводит фазовый рельеф. Такое изображение называется фазово-контрастным. В типичной для этого метода схеме в переднем фокусе конденсора 3 устанавливается апертурная диафрагма 2, отверстие которой имеет форму кольца. Её изображение возникает вблизи заднего фокуса объектива 5, и там же устанавливается т. н. фазовая пластинка 6, на поверхности которой имеется кольцевой выступ или кольцевая канавка, называемая фазовым кольцом. Фазовая пластинка может быть помещена и не в фокусе объектива (часто фазовое кольцо наносят прямо на поверхность одной из линз объектива), но в любом случае неотклонённые в препарате 4 лучи от осветителя 1, дающие изображение диафрагмы 2, должны полностью проходить через фазовое кольцо, кото-рое значительно ослабляет их (его делают поглощающим) и изменяет их фазу на ?/4 (? - длина волны света). В то же время лучи, даже ненамного отклоненные (рассеянные) в препарате, проходят через фазовую пластинку, минуя фазовое кольцо (штриховые линии), и не претерпевают дополнительного сдвига фазы.

С учётом фазового сдвига в материале препарата полная разность фаз между отклоненными и неотклонёнными лучами оказывается близкой к 0 или ?/2, и в результате интерференции света (См. Интерференция света) в плоскости изображения 4' препарата 4 они заметно усиливают или ослабляют друг друга, давая контрастное изображение структуры препарата. Отклоненные лучи имеют значительно меньшую амплитуду по сравнению с неотклонёнными, поэтому ослабление основного пучка в фазовом кольце, сближая значения амплитуд, также приводит к большей контрастности изображения.

Метод позволяет различать малые элементы структуры, чрезвычайно слабо контрастные в методе светлого поля.

Прозрачные частицы, сравнительно не малые по размерам, рассеивают лучи света на столь небольшие углы, что эти лучи проходят вместе с неотклонёнными через фазовое кольцо. Для подобных частиц фазово-контрастный эффект имеет место только вблизи их контуров, где происходит сильное рассеяние.

Поляризационная микроскопия


Микроскопия, основанная на способности разных компонентов клеток и тканей преломлять поляризованные лучи. В поляризационном микроскопе можно исследовать объекты, которым свойственно двойное лучепреломление.


Радиоавтография


Метод изучения распределения радиоактивных веществ (изотопов) в исследуемом объекте или соединениях. Заключается в наложении на объект чувствительной к радиоактивным излучениям фотоэмульсии и получении отпечатка, фиксирующего расположение радиоактивных изотопов.


Культура клеток и тканей вне организма


Метод сохранения в жизнеспособном состоянии клеток, участков тканей, органов или их частей вне организма. Во 2-й пол. 19 в. развитие микробиологии, прежде всего медицинской (необходимость выделения и изучения микробов, вызывающих инфекционные болезни), а также производств, основанных на процессах брожения, привело к созданию методов культивирования клеток бактерий, дрожжей и других микроорганизмов, т.е. методов их выделения, выращивания, размножения и сохранения в искусственных условиях. Были разработаны составы жидких и твёрдых питательных сред, методы, обеспечивающие их стерильность, способы выращивания чистых культур, состоящих из клеток одного вида, и т.д. К сер. 20 в. было освоено культивирование микроорганизмов в промышленных масштабах.

Первые опыты по выращиванию клеток и тканей животных вне организма были сделаны в нач. 20 в. Дальнейшее совершенствование метода шло параллельно успехам цитологии, биохимии, генетики, эмбриологии, молекулярной биологии. Его возможности возросли после того, как научились получать изолированные клетки из различных животных тканей (путём их обработки специальными ферментами, растворяющими межклеточное вещество и разрушающими межклеточные контакты) и выяснили потребности разных клеток в гормонах, факторах роста и др. веществах, вносимых в искусственные питательные среды. Очевидные преимущества работы с генетически однородными клетками и тканями в контролируемых условиях вне организма по сравнению с проведением исследований на целых организмах сделали этот метод одним из наиболее универсальных в биологии. Столь же плодотворным оказалось его применение в медицине и при решении ряда задач сельского хозяйства и биотехнологии.

Клеточные и тканевые культуры использовались для изучения закономерностей митоза и числа клеточных циклов (делений) у клеток разных типов и выяснения в связи с этим «запрограммированности» процесса старения, для изучения механизмов клеточной дифференцировки, формирования специализированных тканей и органов, а также (при совместном культивировании) влияния друг на друга клеток разных типов. Культура клеток и тканей растений появилась позднее - в 1958 г., но уже всего через 6 лет из единственной клетки, извлечённой из корня моркови, удалось в условиях культуры вырастить целое растение с дифференцированными тканями и органами. Это направление широко применяется в селекции и биотехнологии.

Совместное культивирование клеток разных линий (клонов) привело к рождению нового важного раздела в экспериментальной биологии - генетики соматических клеток и прежде всего метода гибридизации соматических клеток.

Клеточные и тканевые культуры позволяют исследовать такие важные для медицины проблемы, как перерождение нормальных клеток в опухолевые, всесторонне изучать их свойства, чувствительность клеток к физическим и химическим факторам, в т.ч. к лекарствам, а также определять потенциальную мутагенность и канцерогенности этих факторов, т.е. их способность вызывать мутации и опухоли. Разработка методов дли-тельного культивирования позволяет формировать банки клеточных линий, обладающих определёнными генетическими и биохимическими свойствами. На этой основе создаются методы криоконсервации (от греч. «криос» - холод) - сохранение в условиях глубокого охлаждения клеток, тканей и органов для трансплантации (пересадки), в качестве резервного генофонда редких и исчезающих биологических видов, а также для других целей. С кон. 20 в. стали возникать банки, в которых хранятся замороженные стволовые клетки, используемые для лечения самых различных болезней и травм.

Клеточные культуры служат также удобными объектами для изучения тканевой несовместимости и других иммунных реакций. Они используются в диагностике вирусов и для получения вакцин. Таким образом, культура клеток и тканей применяется для решения как фундаментальных теоретических проблем (таких как клеточная дифференцировка и др.), так и различных практических задач, особенно в области медицины. Этот метод - неотъемлемая составная часть генной инженерии, клеточной инженерии, клонирования и других направлений экспериментальной биологии.


Прижизненная окраска


Явление окрашивания тканей при жизни организма путем введения в него различных красящих веществ. Красящие вещества должны быть не ядовиты для организма и обладать свойством проникать в ткани, а также удерживаться в них в течении определённого времени. Для окраски применяют кислые или основные краски.

Результаты, получаемые с кислыми красками, зависят не столько от их химического состава, сколько от степени дисперсности и других физико-химических свойств. Высоко дисперсные краски не дают окрашивания, а пропитывают диффузно ткани и быстро выделяются из организма. Поэтому для окрашивания применяют, преимущественно, коллоидные или полуколлоидные красящие вещества ( Trypanblau, Isamin-blau), литиевый кармин и др. Всем этим краскам свойственна отрицательная зарядка частиц, медленность диффузии, нерастворимость в липоидах. После введения кислых витальных красок в организм наступает диффузное пропитывание ими основного вещества, а затем накопление краски в протоплазме определенных клеток организма в виде зернистых отложений. Так красятся лишь живые клетки (ядра при этом не окрашиваются). Мертвые клетки прокрашиваются очень резко диффузно, при чем красятся также и их ядра. Поэтому метод В. о. имеет большое значение для отличия живых клеток от мертвых. Далее, при помощи витальной окраски кислыми красками удается проследить процесс распределения в организме многих веществ, откладывающихся в тканях одинаковым образом с упомянутыми красками. Сюда относятся: желчные пигменты, коллоидные металлы и др. лекарственные вещества коллоидного характера, липоиды, а также, по-видимому, белковые тела, далее - различные бактерии, различные взвешенные частицы экзогенного происхождения, некоторые клеточные элементы и продукты их распада. Главным местом, где происходит отложение кислых витальных красок в зернистой форме, а ташке всех упомянутых сейчас веществ, являются клетки. Особенно характерно для окрашивания клеток кислыми красками то, что при этом никогда не прокрашиваются составные структурные части протоплазмы клеток. Появляющиеся в клетках окрашенные зерна образуются вследствие выпадения краски из растворенного состояния после проникания ее в клетки. Впрочем, кислыми красками пропитываются в известной степени также и некоторые преформированные внутриклеточные включения, особенно белкового характера. При окрашивании в клетках отлаживаются краски в зернистой формы. Механизм образования зерен краски в клетках объясняется различно: по одним взглядам, в клетках отмечается постепенное накопление краски внутри вновь образующихся вакуолей, где происходит постепенное понижение дисперсности краски и, наконец, ее выпадение, при чем имеет значение действие электролитов. Другие придают главное значение в образовании внутриклеточных зерен краски явлениям адсорпции. Далее, имеются указания, что краска проникает в клетки всегда в соединении с белками плазмы, т. о., содержание последних в крови имеет большое значение. Затем, в процессе В. о. кислыми, а также основными красками некоторую роль играет, повидимому, концентрация Н-ионов в тканях. Кроме клеток рет.-энд. системы, зернистые отложения кислых витальных красок образуются также в эпителии извитых канальцев почек (через к-рые, гл. обр., идет выделение этих красок), а также, хотя далеко не у всех животных, в клетках печени. При введении в организм больших количеств нек-рых витальных красок (напр., Trypanblau) удается получить зернистые отложения краски также и в других клеточных элементах, в особенности в эпителии энто-дермального происхождения (v. Mollendorff, Гессе, Глазунов и др.), в различных клетках промежуточной ткани, в клетках многих органов внутренней секреции, в эпителии сосудистых сплетений мозга и пр. Наконец, удавалось получить витальное окрашивание кислыми красками и элементов центральной нервной системы (Рахманов, Behnsen, Мандельштам и др.). В общем, на результат прижизненной окраски, кроме свойств красящего вещества, оказывают влияние также и способ введения краски, дозировка ее и, наконец, состояние самих тканей, особенно степень снабжения их кровью. Интересные результаты были получены при внутривенных введениях неядовитых кислых красок, при чем прослежена быстрота исчезновения их из крови (Оку-нев, Seyderhelm) и дальнейшая судьба в организме (Аничков, Теплов, Каган). При диффузном распределении краски в тканях особенно резко диффузно прокрашиваются стенки сосудов (Петров). При подкожном и внутрибрюшинном введении кислых витальных красок также удалось получить, но более медленно, общее окрашивание животных. При этом особенно резко окрашиваются элементы тканей на месте введения краски. Имеются указания, что при отложении зерен краски в клетках важное участие принимает ретикулярный аппарат клеток (Golgi), т. к. появление зерен происходит сначала всегда в области этого аппарата (работы Насонова, Хлопина, Ясвой-на). Высказывавшиеся прежде мнения, что при окраске кислыми красками прокрашиваются составные части клеточной протоплазмы, напр., митохондрии (Чашин, Stec-kelmacher), в наст, время б. ч. оставлены.- Кроме введения кислых витальных красок в организм, важное значение имеет метод культивирования тканей в плазме, содержащей данные краски-особенно Trypanblau (Hofmann, Максимов, Vetteri, Хлопин). При этом удается наблюдать В. о. клеток и изучать их и в живом состоянии. - Наконец, важен метод исследования при помощи прижизненной окраски живых тканей непосредственно под микроскопом, как это удалось на нек-рых объектах (легкие, мочевой пузырь, брыжжейка амфибий), при чем могут быть применены даже сильные иммерсионные объективы (работы Garmus'a, Von-willer'a, Венслава). Прижизненной окраски тканей эмбрионов при введении кислых красок в материнский организм не наблюдается, т. к. плацента не пропускает краски из крови матери. Для окраски тканей эмбрионов применяется введение красок в полость амниона или, у птиц, впрыскивание, например, в стенку аллонтоиса. Коллоидная краска Kongorot предложена специально для элективной прижизненной окраски амилоида (Bennhold); впрочем, такие же результаты дает и краска Trypanblau (Гер-ценберг). Несколько особняком стоит применение витальных красок для В. о. костей. К таким краскам относятся производные краппа, красящим началом которого является ализарин. Окраска костей основана на образовании соединения ализарина с кальцием, при чем окрашиваются лишь молодые растущие кости (Lieberkuhn, Fischel, Gottlieb). Нек-рые продукты, образующиеся в организме при пат. изменениях НЬ, дают такую же окраску костей, как ализарин. Сюда относится гематопорфирин, который, при избыточном образовании в организме, откладывается в костях, окрашивая весь скелет в резко коричневый цвет (Е. Fraenkel). Несколько особый метод прижизненной окраски представляет собой т.н. витальная хемоскопия по Карчагу (Karczag). Этот метод основывается на способности многих красок группы трифенилметана (например, кислый фуксин, LieMgrim, Wasser-blau) под влиянием нек-рых воздействий (напр., света, тепла, восстановляющих веществ и пр.) переходить в бесцветные карбиноловые соединения. После впрыскивания этих красок исследуют различные ткани, обнаруживая в них краску действием кислоты, к-рая «регенерирует> краску. В. о. основными красками. В отличие от кислых красок, основные окрашивают предсуществующие структурные составные части клеток. Предполагают, что при этом происходит осаждение краски кислыми коллоидами клеток (v. Mollendorff). В особенности резкое осаждение краски происходит при полной ее нейтрализации при избытке краски или кислого коллоида получаются различные цветовые оттенки окрашенных элементов, на чем основаны нек-рые методы определения концентрации Н-ионов в клетках. Основные краски обычно быстрее проникают в клетки и скорее осаждаются, чем кислые. Окрашивая структурные составные части клеток, они дают одинаковые результаты на живых и переживающих объектах. Поэтому они не могут быть вполне применены для отличия живых клеток от отмирающих в той степени, как кислые краски. В общем, для возникновения В. о. основными красками имеют значение следующие условия: диффузионная способность красок, от к-рой зависит быстрота окрашивания, растворимость в липоидах, способность краски к восстановлению, осаждаемость кислыми коллоидами и, наконец, содержание Н-ионов в тканях. Особенное значение придавали растворимости основных красок в липоидах. Скорость возникновения окраски в значительной степени ставили в зависимость от этого свойства, т. к. оно облегчает проникание краски в клетку через поверхностный липоидный слой (Over-ton, Hober, Nierenstein). Однако, когда выяснилось, что в клетки проникают также и нерастворимые в липоидах краски, указанный сейчас взгляд был сильно поколеблен. Наряду с физической проницаемостью клеток был выдвинут взгляд об особой их физиологической проницаемости (НбЬег). В наст, время значение липоидных компонентов клетки выступает в новом освещении в смысле возможности накопления краски на разделе липоид-протоплазма, вследствие способности красок понижать поверхностное натяжение на этом разделе (Окунев). Моментом, препятствующим возникновению В. о. основными красками, является свойство последних переходить путем восстановления в тканях в бесцветные соединения. Этим свойством красок пользуются также для определения мест наибольшего потребления кислорода в тканях (Ehrlich, Unna и др.). Составные части клеток, окрашивающиеся витально основными красками, представляют собой прежде всего различные включения. В этом отношении действие основных красок частью сходно с действием кислых. Далее, прижизненно окрашиваются основными красками секреторные зерна, желтковые пластинки, Нисслевская зернистость в нервных клетках, пищеварительные вакуоли у простейших и пр. Наблюдавшаяся Арнольдом (Arnold) окраска клеточных зернистостей основными красками относится не к пластосомам, а, гл. обр., также к секреторным зернистостям и включениям. Впрочем, при действии нек-рых основных красок (Janusgri'm) удается, особенно в культурах тканей, получить окраску пластосом. Т. о., основные витальные краски окрашивают все же, гл. обр., парапластические субстанции, т.е. такие, к-рые не принимают активного участия в клеточной жизни. Из наиболее употребительных для В. о. основных красок следует назвать Neutral-rot, Nilblausulfat, Methylenblau, Toluidin-falau, Thionin, Bismarekbraun, Krystallvio-iett и др. Все эти краски применяются обыч- но в сильно разведенных растворах. Особенно хорошие результаты дают Neutral-rot, Nilblausulfat и Methylenblau (многочисленные результаты окраски основными красками различных животных, начиная с простейших, см. в работах Nierenstein'a, Vonwiller'a, Loman'a, Stelanski, Fischel'H, Хлопина и др.). Весьма трудно во многих случаях отличить-имеет ли окраска какой-либо основной краской витальный или суп-равитальный характер. Обычно суправи-тальная окраска получается более резкая, при чем окрашиваются также и структурные элементы ядер. Представителем суправи-тальной окраски считается особенно окрашивание (неправильно назыв. «прижизненным») нервных волокон и окончаний по Эрлиху (подробнее об этом методе см. в работах Догеля и его школы). Обычно исследование тканей при окраске основными красками производится без фиксации, на расщипах тканей или на прозрачных перепонках, особенно у хладнокровных (см. работы Garmus'a, Vonwiller'a, Венслава). Далее, применяется также и метод выращивания тканей на плазме с прибавкой основных красок в весьма слабых разведениях (см. работы Vetter'a, R. Erdmann'a, Хлопина). Попытки фиксации основных красок в тканях не дали хороших результатов. Специального упоминания заслуживает прижизненная окраска жира, для чего применяется, гл. обр., краска Sudan III. Последний вводят в растворе в растительном масле через желудок или примешивают его в виде порошка к пище. В результате получается окраска всех жировых депо организма. Механизм распределения краски и проникания ее в жировые депо еще мало изучен (см. работы JakobsthaFfl, M. В. Schmidt'a и др.).


Теги: Гистологические методы исследования  Реферат  Биология
Просмотров: 34926
Найти в Wikkipedia статьи с фразой: Гистологические методы исследования
Назад