Базисная система уравнений

Задание 1

Решить систему методом Гаусса и указать одно из базисных решений:



Решение

а) Найдем общее решение данной системы уравнений методом Гаусса. Для этого сначала выпишем ее расширенную матрицу:

Далее с помощью элементарных преобразований полученной матрицы мы приведем ее к ступенчатому виду:

~ ~

Система несовместна, т.к. ранг матрицы равен 2, а ранг расширенной матрицы равен 3. Следовательно решений нет.


Задание №4

Решить систему методом Гаусса и указать одно из базисных решений:



Решение

а) Найдем общее решение данной системы уравнений методом Гаусса. Для этого сначала выпишем ее расширенную матрицу:

Далее с помощью элементарных преобразований полученной матрицы мы приведем ее к ступенчатому виду:

~ ~

матрица уже имеет ступенчатый вид, поэтому можно перейти к системе эквивалентной данной. Выпишем соответствующую этой матрице систему:


.


Получили трапециевидную матрицу, в которой только две ненулевые строки. Значит ранг r = 2. Число неизвестных в системе n = 3. Так как r < n, то система имеет бесчисленное множество решений, зависящих от n - r = 3 - 2 = 1 параметров.

Получаем, что х2, х3 - базисные неизвестные, а х1 - параметры.

Обозначим для удобства х1 =С1 и выразим базисные неизвестные через параметры.



Мы нашли общее решение исходной системы:

б) Найдем базисное решение исходной системы. Напомним вначале, что базисным называется такое решение системы, в котором все свободные неизвестные равны нулю. Такое решение мы получим, если в найденном нами общем решении положим :

.

Ответ: а) общее решение: , где и - произвольные числа б) базисное решение: .


Задание №3

Найти общее решение системы



Решение

С помощью элементарных преобразований найдем ранг матрицы системы. Для этого приведем матрицу к трапециевидному виду, число ненулевых строк в трапециевидной матрице и будет равно рангу матрицы.

Помножим первую строку на (-2) и сложим со второй, затем помножим первую строку на (-1) и сложим с третьей.

Сложим вторую строку с третьей.

Получили трапециевидную матрицу, в которой три ненулевые строки. Значит ранг r = 3. Число неизвестных в системе n = 5. Так как r < n, то система имеет бесчисленное множество решений, зависящих от n - r = 5 - 3 = 2 параметров. Базисный минор это отличный от нуля минор, порядок которого равен рангу матрицы. Пусть - базисный минор. Тогда х1 и х2 , х5 - базисные неизвестные, т. к. коэффициенты перед ними образуют базисный минор, х3, х4 - параметры. Обозначим для удобства х3 =С1, х4 =С2 и выразим базисные неизвестные через параметры. Так как r = 3, то достаточно взять три уравнения, соответствующие базисному минору:



Решим эту систему с помощью формул Крамера.



Тогда:



Общее решение исходной системы имеет вид:



Частные решения системы линейных уравнений получаем, придавая параметрам конкретные числовые значения. Множество решений однородной системы линейных уравнений образует линейное пространство размерности - r = 5 - 3 = 2, т. е. базис в этом пространстве состоит из одного линейно независимого решения. Придадим параметру С1, С2, С3, поочередно следующее значение: С1 = 1, С2 = 0 и С1 = 1, С2 = 0, тогда получим два частных решения системы, линейно-независимых между собой,

Решения Е1 и Е2 образуют один из базисов пространства решений данной системы, которое можно записать, как оно состоит из бесчисленного множества четверок вида , где С1 и С2 принимают произвольные значения. Размерность этого пространства равна двум.


Задание №2

Построить пространство решений однородной системы трех линейных уравнений с четырьмя неизвестными и указать какой-либо базис:



Решение

С помощью элементарных преобразований найдем ранг матрицы системы. Для этого приведем матрицу к трапециевидному виду, число ненулевых строк в трапециевидной матрице и будет равно рангу матрицы.

первую строку домножим на (-1) и сложим с третьей и четвертой.

Сложим вторую строку с третьей домножив на (-1), и сложим вторую строку с четвертой.

Получили трапециевидную матрицу, в которой только две ненулевые строки. Значит ранг r = 2. Число неизвестных в системе n = 4. Так как r < n, то система имеет бесчисленное множество решений, зависящих от n - r = 4 - 2 = 2 параметров. Базисный минор это отличный от нуля минор, порядок которого равен рангу матрицы. Пусть - базисный минор. Тогда х1 и х2 - базисные неизвестные, т. к. коэффициенты перед ними образуют базисный минор, х3 и х4 - параметры. Обозначим для удобства х3 =С1 и х4 = С2 и выразим базисные неизвестные через параметры. Так как r = 2, то достаточно взять два уравнения, соответствующие базисному минору:



Решим эту систему с помощью формул Крамера.



Тогда:



Общее решение исходной системы имеет вид:



Частные решения системы линейных уравнений получаем, придавая параметрам конкретные числовые значения. Множество решений однородной системы линейных уравнений образует линейное пространство размерности

n - r = 4 - 2 = 2, т. е. базис в этом пространстве состоит из двух линейно независимых решений. Придадим параметрам С1 и С2 поочередно следующие значения: С1 = 1 и С2 = 0 и С1 = 0 и С2 = 1, тогда получим два частных решения системы, линейно-независимых между собой,

Решения Е1 и Е2 образуют один из базисов пространства решений данной системы, которое можно записать, как оно состоит из бесчисленного множества четверок вида , где С1 и С2 принимают произвольные значения. Размерность этого пространства равна двум.


Задание 3

Решить систему методом Гаусса и указать одно из базисных решений:



Решение.

а) Найдем общее решение данной системы уравнений методом Гаусса. Для этого сначала выпишем ее расширенную матрицу:

Далее с помощью элементарных преобразований полученной матрицы мы приведем ее к ступенчатому виду:

~ ~

~ ~

Эта матрица уже имеет ступенчатый вид, поэтому можно перейти к системе эквивалентной данной. Выпишем соответствующую этой матрице систему:


.


Получили трапециевидную матрицу, в которой только три ненулевые строки. Значит ранг r = 3. Число неизвестных в системе n = 5. Так как r < n, то система имеет бесчисленное множество решений, зависящих от n - r = 5 - 3 = 2 параметров.

Получаем, что х1, х4, х5 - базисные неизвестные, а х2, х3 - параметры.

Обозначим для удобства х2 =С1, х3 =С2 и выразим базисные неизвестные через параметры.



Мы нашли общее решение исходной системы:



б) Найдем базисное решение исходной системы. Напомним вначале, что базисным называется такое решение системы, в котором все свободные неизвестные равны нулю. Такое решение мы получим, если в найденном нами общем решении положим :

.

Ответ: а) общее решение: , где и - произвольные числа б) базисное решение: .


Задание 4

Построить пространство решений однородной системы трех линейных уравнений с четырьмя неизвестными и указать какой-либо базис:



Решение

С помощью элементарных преобразований найдем ранг матрицы системы. Для этого приведем матрицу к трапециевидному виду, число ненулевых строк в трапециевидной матрице и будет равно рангу матрицы.

первую строку домножим на 3 и сложим со второй, затем помножим первую строку на (5) и сложим с третьей.

Сложим вторую строку с третьей домножив на (-1).

Получили трапециевидную матрицу, в которой только две ненулевые строки. Значит ранг r = 2. Число неизвестных в системе n = 4. Так как r < n, то система имеет бесчисленное множество решений, зависящих от n - r = 4 - 2 = 2 параметров. Базисный минор это отличный от нуля минор, порядок которого равен рангу матрицы. Пусть - базисный минор. Тогда х1 и х2 - базисные неизвестные, т. к. коэффициенты перед ними образуют базисный минор, х3 и х4 - параметры. Обозначим для удобства х3 =С1 и х4 = С2 и выразим базисные неизвестные через параметры. Так как r = 2, то достаточно взять два уравнения, соответствующие базисному минору:



Решим эту систему с помощью формул Крамера.


Тогда:


Общее решение исходной системы имеет вид:



Частные решения системы линейных уравнений получаем, придавая параметрам конкретные числовые значения. Множество решений однородной системы линейных уравнений образует линейное пространство размерности

n - r = 4 - 2 = 2, т. е. базис в этом пространстве состоит из двух линейно независимых решений. Придадим параметрам С1 и С2 поочередно следующие значения: С1 = 1 и С2 = 0 и С1 = 0 и С2 = 1, тогда получим два частных решения системы, линейно-независимых между собой,

Решения Е1 и Е2 образуют один из базисов пространства решений данной системы, которое можно записать, как оно состоит из бесчисленного множества четверок вида , где С1 и С2 принимают произвольные значения. Размерность этого пространства равна двум.


Задание 5

Построить пространство решений однородной системы трех линейных уравнений с четырьмя неизвестными и указать какой-либо базис:



Решение

С помощью элементарных преобразований найдем ранг матрицы системы. Для этого приведем матрицу к трапециевидному виду, число ненулевых строк в трапециевидной матрице и будет равно рангу матрицы.

первую строку домножим на 3 и сложим со второй, помножим первую строку на (-4) и сложим с третьей.

затем помножим первую строку на (-3) и сложим с четвертой.

Сложим вторую строку с третьей домножив на (-3), и с чеивертой домножив на (2).

Получили трапециевидную матрицу, в которой только две ненулевые строки. Значит ранг r = 2. Число неизвестных в системе n = 4. Так как r < n, то система имеет бесчисленное множество решений, зависящих от n - r = 4 - 2 = 2 параметров. Базисный минор это отличный от нуля минор, порядок которого равен рангу матрицы. Пусть - базисный минор. Тогда х1 и х2 - базисные неизвестные, т. к. коэффициенты перед ними образуют базисный минор, х3 и х4 - параметры. Обозначим для удобства х3 =С1 и х4 = С2 и выразим базисные неизвестные через параметры. Так как r = 2, то достаточно взять два уравнения, соответствующие базисному минору:



Решим эту систему с помощью формул Крамера.



Тогда:



Общее решение исходной системы имеет вид:



Частные решения системы линейных уравнений получаем, придавая параметрам конкретные числовые значения. Множество решений однородной системы линейных уравнений образует линейное пространство размерности

n - r = 4 - 2 = 2, т. е. базис в этом пространстве состоит из двух линейно независимых решений. Придадим параметрам С1 и С2 поочередно следующие значения: С1 = 1 и С2 = 0 и С1 = 0 и С2 = 1, тогда получим два частных решения системы, линейно-независимых между собой,

Решения Е1 и Е2 образуют один из базисов пространства решений данной системы, которое можно записать, как оно состоит из бесчисленного множества четверок вида , где С1 и С2 принимают произвольные значения. Размерность этого пространства равна двум.


Задание №6

Решить систему методом Гаусса и указать одно из базисных решений:



Решение

а) Найдем общее решение данной системы уравнений методом Гаусса. Для этого сначала выпишем ее расширенную матрицу:

Далее с помощью элементарных преобразований полученной матрицы мы приведем ее к ступенчатому виду:


~ ~

~~

~


Эта матрица уже имеет ступенчатый вид, поэтому можно перейти к системе эквивалентной данной. Выпишем соответствующую этой матрице систему:


.


Получили трапециевидную матрицу, в которой четыре ненулевые строки. Значит ранг r = 4. Число неизвестных в системе n = 5. Так как r < n, то система имеет бесчисленное множество решений, зависящих от n - r = 5 - 4 = 1 параметров.

Получаем, что х1, х2, х4, х5, - базисные неизвестные, а х3 - параметры.

Обозначим для удобства х3 =С1 и выразим базисные неизвестные через параметры.



Мы нашли общее решение исходной системы:



б) Найдем базисное решение исходной системы. Напомним вначале, что базисным называется такое решение системы, в котором все свободные неизвестные равны нулю. Такое решение мы получим, если в найденном нами общем решении положим :



.

Ответ: а) общее решение:


,


где - произвольные числа

б) базисное решение: .


Задание №7

Построить пространство решений однородной системы трех линейных уравнений с четырьмя неизвестными и указать какой-либо базис:



Решение

С помощью элементарных преобразований найдем ранг матрицы системы. Для этого приведем матрицу к трапециевидному виду, число ненулевых строк в трапециевидной матрице и будет равно рангу матрицы.

Помножим первую строку на (4) и сложим со второй, затем помножим первую строку на (-6) и сложим с третьей.

Сложим вторую строку с третьей.

Получили трапециевидную матрицу, в которой только три ненулевые строки. Значит ранг r = 3. Число неизвестных в системе n = 4. Так как r < n, то система имеет бесчисленное множество решений, зависящих от n - r = 4 - 3 = 1 параметров. Базисный минор это отличный от нуля минор, порядок которого равен рангу матрицы. Пусть - базисный минор. Тогда х1 и х2 , х4 - базисные неизвестные, т. к. коэффициенты перед ними образуют базисный минор, х3 - параметры. Обозначим для удобства х3 =С1 и выразим базисные неизвестные через параметры. Так как r = 3, то достаточно взять три уравнения, соответствующие базисному минору:



Решим эту систему с помощью формул Крамера.



Тогда:



Общее решение исходной системы имеет вид:



Частные решения системы линейных уравнений получаем, придавая параметрам конкретные числовые значения. Множество решений однородной системы линейных уравнений образует линейное пространство размерности

n - r = 4 - 3 = 1, т. е. базис в этом пространстве состоит из одного линейно независимого решения. Придадим параметру С1 следующее значение: С1 = 1, тогда получим одно частное решение системы.

Решения Е1 образует один из базисов пространства решений данной системы, которое можно записать, как оно состоит из бесчисленного множества четверок вида , где С1 принимает произвольные значения. Размерность этого пространства равна одному.


Задание №8

Определите размерность пространства решений неоднородной системы уравнений, и указать какой-нибудь базис этого пространства.



Решение.

а) Найдем общее решение данной системы уравнений методом Гаусса. Для этого сначала выпишем ее расширенную матрицу:

Далее с помощью элементарных преобразований полученной матрицы мы приведем ее к ступенчатому виду:

~ ~

Эта матрица уже имеет ступенчатый вид, поэтому можно перейти к системе эквивалентной данной. Выпишем соответствующую этой матрице систему:


.

Получаем, что х1, х2 - базисные неизвестные, а х3, х4 - параметры.

Обозначим для удобства х4 =С1 и выразим базисные неизвестные через параметры.



Мы нашли общее решение исходной системы:

б) Найдем базисное решение исходной системы. Напомним вначале, что базисным называется такое решение системы, в котором все свободные неизвестные равны нулю. Такое решение мы получим, если в найденном нами общем решении положим :



Ответ: а) общее решение: , где и - произвольные числа б) базисное решение: .

уравнение крамер линейный базис


Задание №9

Решить систему методом Гаусса и указать одно из базисных решений:



Решение

а) Найдем общее решение данной системы уравнений методом Гаусса. Для этого сначала выпишем ее расширенную матрицу:

Далее с помощью элементарных преобразований полученной матрицы мы приведем ее к ступенчатому виду:

~

~

~ ~

Эта матрица уже имеет ступенчатый вид, поэтому можно перейти к системе эквивалентной данной. Выпишем соответствующую этой матрице систему:


.


Получили трапециевидную матрицу, в которой только три ненулевые строки. Значит ранг r = 3. Число неизвестных в системе n = 5. Так как r < n, то система имеет бесчисленное множество решений, зависящих от n - r = 5 - 3 = 2 параметров.

Получаем, что х1, х3, х5 - базисные неизвестные, а х2, х4 - параметры.

Обозначим для удобства х2 =С1, х4 =С2 и выразим базисные неизвестные через параметры.



Мы нашли общее решение исходной системы:



б) Найдем базисное решение исходной системы. Напомним вначале, что базисным называется такое решение системы, в котором все свободные неизвестные равны нулю. Такое решение мы получим, если в найденном нами общем решении положим :


.


Ответ: а) общее решение: , где и - произвольные числа б) базисное решение: .


Задание №10

Построить пространство решений однородной системы трех линейных уравнений с четырьмя неизвестными и указать какой-либо базис:



Решение

С помощью элементарных преобразований найдем ранг матрицы системы. Для этого приведем матрицу к трапециевидному виду, число ненулевых строк в трапециевидной матрице и будет равно рангу матрицы.

Первую строку домножим на (-1) и сложим со второй и третьей.

Сложим вторую строку с третьей.

Получили трапециевидную матрицу, в которой только две ненулевые строки. Значит ранг r = 2. Число неизвестных в системе n = 4. Так как r < n, то система имеет бесчисленное множество решений, зависящих от n - r = 4 - 2 = 2 параметров. Базисный минор это отличный от нуля минор, порядок которого равен рангу матрицы. Пусть - базисный минор. Тогда х1 и х2 - базисные неизвестные, т. к. коэффициенты перед ними образуют базисный минор, х3 и х4 - параметры. Обозначим для удобства х3 =С1 и х4 = С2 и выразим базисные неизвестные через параметры. Так как r = 2, то достаточно взять два уравнения, соответствующие базисному минору:



Решим эту систему с помощью формул Крамера.



Тогда:



Общее решение исходной системы имеет вид:



Частные решения системы линейных уравнений получаем, придавая параметрам конкретные числовые значения. Множество решений однородной системы линейных уравнений образует линейное пространство размерности

n - r = 4 - 2 = 2, т. е. базис в этом пространстве состоит из двух линейно независимых решений. Придадим параметрам С1 и С2 поочередно следующие значения: С1 = 1 и С2 = 0 и С1 = 0 и С2 = 1, тогда получим два частных решения системы, линейно-независимых между собой,

Решения Е1 и Е2 образуют один из базисов пространства решений данной системы, которое можно записать, как оно состоит из бесчисленного множества четверок вида , где С1 и С2 принимают произвольные значения. Размерность этого пространства равна двум.


Задание №11

Решить систему методом Гаусса и указать одно из базисных решений:



Решение

а) Найдем общее решение данной системы уравнений методом Гаусса. Для этого сначала выпишем ее расширенную матрицу:

Далее с помощью элементарных преобразований полученной матрицы мы приведем ее к ступенчатому виду:

~~

Эта матрица уже имеет ступенчатый вид, поэтому можно перейти к системе эквивалентной данной. Выпишем соответствующую этой матрице систему:


.


Получили трапециевидную матрицу, в которой только две ненулевые строки. Значит ранг r = 2. Число неизвестных в системе n = 4. Так как r < n, то система имеет бесчисленное множество решений, зависящих от n - r = 4 - 2 = 2 параметров.

Получаем, что х1, х4 - базисные неизвестные, а х2, х3 - параметры.

Обозначим для удобства х2 =С1, х3 =С2 и выразим базисные неизвестные через параметры.



Мы нашли общее решение исходной системы:

б) Найдем базисное решение исходной системы. Напомним вначале, что базисным называется такое решение системы, в котором все свободные неизвестные равны нулю. Такое решение мы получим, если в найденном нами общем решении положим :



.

Ответ: а) общее решение: , где и - произвольные числа б) базисное решение: .


Задание №12

Определите размерность пространства решений неоднородной системы уравнений, и указать какой-нибудь базис этого пространства.



Решение

а) Найдем общее решение данной системы уравнений методом Гаусса. Для этого сначала выпишем ее расширенную матрицу:

Далее с помощью элементарных преобразований полученной матрицы мы приведем ее к ступенчатому виду:

~ ~

Эта матрица имеет ступенчатый вид, поэтому можно перейти к системе эквивалентной данной. Выпишем соответствующую этой матрице систему:



Получили трапециевидную матрицу, в которой только две ненулевые строки. Значит ранг r = 2. Число неизвестных в системе n = 5. Так как r < n, то система имеет бесчисленное множество решений, зависящих от n - r = 5 - 2 = 3 параметров. Получаем, что х1, х2 - базисные неизвестные, а х3, х4, х5 - параметры.

Обозначим для удобства х3 =С1, х4 =С2 х5 =С3 и выразим базисные неизвестные через параметры.



Мы нашли общее решение исходной системы:



б) Найдем базисное решение исходной системы. Напомним вначале, что базисным называется такое решение системы, в котором все свободные неизвестные равны нулю. Такое решение мы получим, если в найденном нами общем решении положим :



Ответ: а) общее решение: , где и - произвольные числа б) базисное решение: .


Задание №13

Построить пространство решений однородной системы трех линейных уравнений с четырьмя неизвестными и указать какой-либо базис:



Решение

С помощью элементарных преобразований найдем ранг матрицы системы. Для этого приведем матрицу к трапециевидному виду, число ненулевых строк в трапециевидной матрице и будет равно рангу матрицы.

первую строку домножим на 3 и сложим со второй, затем сложим первую строку с третьей.

третью строку домножим на (-2) и сложим со второй.

Получили трапециевидную матрицу, в которой только две ненулевые строки. Значит ранг r = 2. Число неизвестных в системе n = 4. Так как r < n, то система имеет бесчисленное множество решений, зависящих от n - r = 4 - 2 = 2 параметров. Базисный минор это отличный от нуля минор, порядок которого равен рангу матрицы. Пусть - базисный минор. Тогда х1 и х2 - базисные неизвестные, т. к. коэффициенты перед ними образуют базисный минор, х3 и х4 - параметры. Обозначим для удобства х3 =С1 и х4 = С2 и выразим базисные неизвестные через параметры. Так как r = 2, то достаточно взять два уравнения, соответствующие базисному минору:



Решим эту систему с помощью формул Крамера.



Тогда:



Общее решение исходной системы имеет вид:



Частные решения системы линейных уравнений получаем, придавая параметрам конкретные числовые значения. Множество решений однородной системы линейных уравнений образует линейное пространство размерности

n - r = 4 - 2 = 2, т. е. базис в этом пространстве состоит из двух линейно независимых решений. Придадим параметрам С1 и С2 поочередно следующие значения: С1 = 1 и С2 = 0 и С1 = 0 и С2 = 1, тогда получим два частных решения системы, линейно-независимых между собой,

Решения Е1 и Е2 образуют один из базисов пространства решений данной системы, которое можно записать, как оно состоит из бесчисленного множества четверок вида , где С1 и С2 принимают произвольные значения. Размерность этого пространства равна двум.


Задание №14

Построить пространство решений однородной системы трех линейных уравнений с четырьмя неизвестными и указать какой-либо базис:



Решение

С помощью элементарных преобразований найдем ранг матрицы системы. Для этого приведем матрицу к трапециевидному виду, число ненулевых строк в трапециевидной матрице и будет равно рангу матрицы.

третью строку домножим на -2 и сложим со второй, затем помножим третью строку на -3 и сложим с первой.

Сложим первую строку со второй домножив на (-1), первую строку сложим с третьей.

Получили трапециевидную матрицу, в которой только две ненулевые строки. Значит ранг r = 2. Число неизвестных в системе n = 4. Так как r < n, то система имеет бесчисленное множество решений, зависящих от n - r = 4 - 2 = 2 параметров.

Получаем, что х1, х3, - базисные неизвестные, а х2, х4 - параметры.

Обозначим для удобства х2 =С1 , х4 =С2 и выразим базисные неизвестные через параметры.



Мы нашли общее решение исходной системы:



б) Найдем базисное решение исходной системы. Напомним вначале, что базисным называется такое решение системы, в котором все свободные неизвестные равны нулю. Такое решение мы получим, если в найденном нами общем решении положим :



.

Ответ: а) общее решение:


,


где - произвольные числа

б) базисное решение: .


Теги: Базисная система уравнений  Контрольная работа  Математика
Просмотров: 46722
Найти в Wikkipedia статьи с фразой: Базисная система уравнений
Назад