Рекомендации и примеры решения задач по математике в соответствии с требованиями единого государственного экзамена
1. Геометрический смысл производной
математический задача решение
В задаче B8 дается график функции или производной, по которому требуется определить одну из следующих величин:
1.Значение производной в некоторой точке x0,
2.Точки максимума или минимума (точки экстремума),
.Интервалы возрастания и убывания функции (интервалы монотонности).
Функции и производные, представленные в этой задаче, всегда непрерывны, что значительно упрощает решение. Несмотря на то, что задача относится к разделу математического анализа, она вполне по силам даже самым слабым ученикам, поскольку никаких глубоких теоретических познаний здесь не требуется.
Для нахождения значения производной, точек экстремума и интервалов монотонности существуют простые и универсальные алгоритмы - все они будут рассмотрены ниже.
Информация к размышлению
Внимательно читайте условие задачи B8, чтобы не допускать глупых ошибок: иногда попадаются довольно объемные тексты, но важных условий, которые влияют на ход решения, там немного.
Вычисление значения производной. Метод двух точек
Если в задаче дан график функции f(x), касательная к этому графику в некоторой точке x0, и требуется найти значение производной в этой точке, применяется следующий алгоритм:
1.Найти на графике касательной две «адекватные» точки: их координаты должны быть целочисленными. Обозначим эти точки A (x1; y1) и B (x2; y2). Правильно выписывайте координаты - это ключевой момент решения, и любая ошибка здесь приводит к неправильному ответу.
2.Зная координаты, легко вычислить приращение аргумента Дx = x2 ? x1 и приращение функции Дy = y2 ? y1.
.Наконец, находим значение производной D = Дy/Дx. Иными словами, надо разделить приращение функции на приращение аргумента - и это будет ответ.
Еще раз отметим: точки A и B надо искать именно на касательной, а не на графике функции f(x), как это часто случается. Касательная обязательно будет содержать хотя бы две таких точки - иначе задача составлена некорректно.
·Задача. На рисунке изображен график функции y = f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.
Решение
Рассмотрим точки A (?3; 2) и B (?1; 6) и найдем приращения:Дx = x2 ? x1 = ?1 ? (?3) = 2; Дy = y2 ? y1 = 6 ? 2 = 4.
Найдем значение производной: D = Дy/Дx = 4/2 = 2.
Ответ: 2
Задача
На рисунке изображен график функции y = f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.
Решение
Рассмотрим точки A (0; 3) и B (3; 0), найдем приращения:
Дx = x2 ? x1 = 3 ? 0 = 3;
Дy = y2 ? y1 = 0 ? 3 = ?3.
Теперь находим значение производной:
= Дy/Дx = ?3/3 = ?1.
Ответ: ?1
Задача
математический интеграл геометрический
На рисунке изображен график функции y = f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.
Решение
Рассмотрим точки A (0; 2) и B (5; 2) и найдем приращения:
Дx = x2 ? x1 = 5 ? 0 = 5; Дy = y2 ? y1 = 2 ? 2 = 0.
Осталось найти значение производной: D = Дy/Дx = 0/5 = 0.
Ответ: 0
Из последнего примера можно сформулировать правило: если касательная параллельна оси OX, производная функции в точке касания равна нулю. В этом случае даже не надо ничего считать - достаточно взглянуть на график.
. Вычисление точек максимума и минимума
Иногда вместо графика функции в задаче B8 дается график производной и требуется найти точку максимума или минимума функции. При таком раскладе метод двух точек бесполезен, но существует другой, еще более простой алгоритм. Для начала определимся с терминологией:
1.Точка x0 называется точкой максимума функции f(x), если в некоторой окрестности этой точки выполняется неравенство: f(x0) ? f(x).
2.Точка x0 называется точкой минимума функции f(x), если в некоторой окрестности этой точки выполняется неравенство: f(x0) ? f(x).
Для того чтобы найти точки максимума и минимума по графику производной, достаточно выполнить следующие шаги:
1.Перечертить график производной, убрав всю лишнюю информацию. Как показывает практика, лишние данные только мешают решению. Поэтому отмечаем на координатной оси нули производной - и все.
2.Выяснить знаки производной на промежутках между нулями. Если для некоторой точки x0 известно, что f(x0) ? 0, то возможны лишь два варианта: f(x0) ? 0 или f(x0) ? 0. Знак производной легко определить по исходному чертежу: если график производной лежит выше оси OX, значит f(x) ? 0. И наоборот, если график производной проходит под осью OX, то f(x) ? 0.
.Снова проверяем нули и знаки производной. Там, где знак меняется с минуса на плюс, находится точка минимума. И наоборот, если знак производной меняется с плюса на минус, это точка максимума. Отсчет всегда ведется слева направо.
Эта схема работает только для непрерывных функций - других в задаче B8 не встречается.
·Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [?5; 5]. Найдите точку минимума функции f(x) на этом отрезке.
Решение
Избавимся от лишней информации - оставим только границы [?5; 5] и нули производной x = ?3 и x = 2,5. Также отметим знаки:
Очевидно, в точке x = ?3 знак производной меняется с минуса на плюс. Это и есть точка минимума.
Ответ: ?3
Задача
На рисунке изображен график производной функции f(x), определенной на отрезке [?3; 7]. Найдите точку максимума функции f(x) на этом отрезке.
Решение
Перечертим график, оставив на координатной оси только границы [?3; 7] и нули производной x = ?1,7 и x = 5. Отметим на полученном графике знаки производной. Имеем:
Очевидно, в точке x = 5 знак производной меняется с плюса на минус - это точка максимума.
Ответ: 5
Задача
На рисунке изображен график производной функции f(x), определенной на отрезке [?6; 4].
Найдите количество точек максимума функции f(x), принадлежащих отрезку [?4; 3].
Решение
Из условия задачи следует, что достаточно рассмотреть только часть графика, ограниченную отрезком [?4; 3]. Поэтому строим новый график, на котором отмечаем только границы [?4; 3] и нули производной внутри него. А именно, точки x = ?3,5 и x = 2. Получаем:
На этом графике есть лишь одна точка максимума x = 2. Именно в ней знак производной меняется с плюса на минус.
Ответ: 1
Небольшое замечание по поводу точек с нецелочисленными координатами. Например, в последней задаче была рассмотрена точка x = ?3,5, но с тем же успехом можно взять x = ?3,4. Если задача составлена корректно, такие изменения не должны влиять на ответ, поскольку точки «без определенного места жительства» не принимают непосредственного участия в решении задачи. Разумеется, с целочисленными точками такой фокус не пройдет.
3. Нахождение интервалов возрастания и убывания функции
В такой задаче, подобно точкам максимума и минимума, предлагается по графику производной отыскать области, в которых сама функция возрастает или убывает. Для начала определим, что такое возрастание и убывание:
1.Функция f(x) называется возрастающей на отрезке [a; b] если для любых двух точек x1 и x2 из этого отрезка верно утверждение: x1 ? x2 ? f(x1) ? f(x2). Другими словами, чем больше значение аргумента, тем больше значение функции.
2.Функция f(x) называется убывающей на отрезке [a; b] если для любых двух точек x1 и x2 из этого отрезка верно утверждение: x1 ? x2 ? f(x1) ? f(x2). Т.е. большему значению аргумента соответствует меньшее значение функции.
Сформулируем достаточные условия возрастания и убывания:
1.Для того чтобы непрерывная функция f(x) возрастала на отрезке [a; b], достаточно, чтобы ее производная внутри отрезка была положительна, т.е. f(x) ? 0.
2.Для того чтобы непрерывная функция f(x) убывала на отрезке [a; b], достаточно, чтобы ее производная внутри отрезка была отрицательна, т.е. f(x) ? 0.
Примем эти утверждения без доказательств. Таким образом, получаем схему для нахождения интервалов возрастания и убывания, которая во многом похожа на алгоритм вычисления точек экстремума:
1.Убрать всю лишнюю информацию. На исходном графике производной нас интересуют в первую очередь нули функции, поэтому оставим только их.
2.Отметить знаки производной на интервалах между нулями. Там, где f(x) ? 0, функция возрастает, а где f(x) ? 0 - убывает. Если в задаче установлены ограничения на переменную x, дополнительно отмечаем их на новом графике.
.Теперь, когда нам известно поведение функции и ограничения, остается вычислить требуемую в задаче величину.
·Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [?3; 7,5]. Найдите промежутки убывания функции f(x). В ответе укажите сумму целых чисел, входящих в эти промежутки.
Решение
Как обычно, перечертим график и отметим границы [?3; 7,5], а также нули производной x = ?1,5 и x = 5,3. Затем отметим знаки производной. Имеем:
Поскольку на интервале (? 1,5) производная отрицательна, это и есть интервал убывания функции. Осталось просуммировать все целые числа, которые находятся внутри этого интервала:?1 + 0 + 1 + 2 + 3 + 4 + 5 = 14.
Ответ: 14
Задача
На рисунке изображен график производной функции f(x), определенной на отрезке [?10; 4]. Найдите промежутки возрастания функции f(x). В ответе укажите длину наибольшего из них.
Решение
Избавимся от лишней информации. Оставим только границы [?10; 4] и нули производной, которых в этот раз оказалось четыре: x = ?8, x = ?6, x = ?3 и x = 2. Отметим знаки производной и получим следующую картинку:
Нас интересуют промежутки возрастания функции, т.е. такие, где f(x) ? 0. На графике таких промежутков два: (?8; ?6) и (?3; 2). Вычислим их длины:1 = ? 6 ? (?8) = 2;2 = 2 ? (?3) = 5.
Поскольку требуется найти длину наибольшего из интервалов, в ответ записываем значение l2 = 5.
На рисунке изображён график функции , одной из первообразных некоторой функции , определённой на интервале . Пользуясь рисунком, определите количество решений уравнения на отрезке .
Поскольку - первообразная функции - это функция, производная которой равна : - исходную задачу можно переформулировать так: по графику функции найти количество точек, принадлежащих отрезку , в которых производная функции равна нулю.
Как мы знаем, производная равну нулю в точках экстремума.
Отметим на рисунке сам отрезок и точки экстремума на графике функции:
Точки экстремума («холмики» и «впадинки») выделены красным цветом. На отрезке их 10.
Ответ: 10.
Если заданы границы интегрирования, то мы получаем определенный интеграл:
Здесь число - нижний предел интегрирования, число - верхний предел интегрирования. Определенный интеграл - это ЧИСЛО, значение которого вычисляется по формуле Ньютона - Лейбница:
.
- это значение первообразной функции в точке , и, соответственно, - это значение первообразной функции в точке .
Для нас с точки зрения решения задач важное значение имеет геометрический смысл определенного интеграла.
Рассмотрим фигуру, изображенную на рисунке:
Зеленая фигура, ограниченая сверху графиком функции , слева прямой , справа прямой , и снизу осью ОХ называется криволинейной трапецией.
. Геометрический смысл определенного интеграла
Определенный интеграл - это число, равное площади криволинейной трапеции - фигуры, ограниченой сверху графиком положительной на отрезке функции , слева прямой , справа прямой , и снизу осью ОХ.
Решим задачу из Открытого банка заданий для подготовки к ЕГЭ по математике.
Прототип задания B8 (№ 323080)
На рисунке изображён график некоторой функции . Функция - одна из первообразных функции . Найдите
площадь закрашенной фигуры.
Закрашенная фигура представляет собой криволинейную трапецию, ограниченную сверху графиком функции , слева прямой , справа прямой , и снизу осью ОХ.
Площадь этой криволинейной трапеции вычисляется по формуле:
,
где - первообразная функции .
По условию задачи , поэтому, чтобы найти площадь фигуры, нам нужно найти значение первообразной в точке -8, в точке -10, и затем из первого вычесть второе.
Замечу, что в этих задачах очень часто возникают ошибки именно в вычислениях, поэтому советую аккуратно и подробно их записывать, и ничего не считать «в уме».
=
=
Ответ: 4